编辑器:F。Gelis QCD与字符串模型之间的关系是探索Quarks之间相互作用潜力的宝贵观点。在这项研究中,我们研究了与加速观察者所经历的临床相关的手性对称性的恢复。利用Schwinger模型,我们分析了Quark-Antiquarks之间的弦或染色体孔管的临界点,而夸克之间的分离增加。在这项研究中,确定Quark-Antiquark染色器式孔管或弦弦断裂的临界距离为𝑟= 1。294±0。040 FM。与此临界点相对应的加速度和未温度的温度表示系统的手性对称性从断裂状态到恢复状态的过渡。我们对临界加速度的估计值(𝑎=1。14×10 34 cm/s 2)和未温度(𝑇= 0。038 GEV)与以前的研究保持一致。此分析在夸克相互作用的背景下,阐明了手性对称性恢复,效果的效果以及弦乐或铬发射器的破裂之间的相互作用。
b'let g =(v,e)是一个简单,无方向性和连接的图。A con- nected dominating set S \xe2\x8a\x86 V is a secure connected dominating set of G , if for each u \xe2\x88\x88 V \\ S , there exists v \xe2\x88\x88 S such that ( u, v ) \xe2\x88\x88 E and the set ( S \\ { v })\ xe2 \ x88 \ xaa {u}是G的主导集。由\ xce \ xb3 sc(g)表示的安全连接的g的最小尺寸称为g的安全连接支配数。给出了图G和一个正整数K,安全连接的支配(SCDM)问题是检查G是否具有最多k的安全连接的统治组。在本文中,我们证明SCDM问题是双弦图(弦弦图的子类)的NP完整图。我们研究了该问题的复杂性,即两分图的某些亚类,即恒星凸两分部分,梳子凸两分部分,弦弦两分和链图。最小安全连接的主导集(MSCD)问题是\ xef \ xac \ x81nd在输入图中的最小尺寸的安全连接的主导集。我们提出a(\ xe2 \ x88 \ x86(g)+1) - MSCD的近似算法,其中\ xe2 \ x88 \ x86(g)是输入图G的最大程度)对于任何\ xc7 \ xab> 0,除非np \ xe2 \ x8a \ x86 dtime | V | o(log log | v |)即使对于两分图。最后,我们证明了MSCDS对于\ Xe2 \ x88 \ x86(g)= 4的图形是APX-Complete。关键字:安全的统治,复杂性类,树宽,和弦图。2010数学主题classi \ xef \ xac \ x81cation:05c69,68q25。
14423数学I:现代代数和分析几何形状------------------- 14463:动物学I:弦的功能解剖
可实现高斯图的概念属于拓扑学的数学领域,更具体地说,是封闭平面曲线的研究。对于一条封闭的平面曲线,例如(图1, a)所示,它的高斯码(或高斯字)可以通过用不同的符号(或数字)标记所有交点,然后沿着曲线一路行进并记下途中遇到的标签来获得。例如,(图1, a)所示曲线的高斯码之一是 123123。很容易看出,具有 n 个交点的曲线的高斯码长度为 2 n,它是一个双出现字,也就是说,每个符号在其中恰好出现两次。任何双出现词 w 都可以与其弦图相关联;它由一个圆圈组成,所有 w 符号都顺时针排列在圆圈周围,弦连接用相同符号标记的点,如图1,b 所示。如果可以从平面曲线中获得双出现词及其对应的弦图,则该词和图都称为可实现的。并非每个高斯图都是可实现的;例如,(图2)和(图3)中的图是不可实现的。
质心 (cm) 和净压力中心 (cp) • 主体轴线 • 按平均气动弦标准化 • 不反映压力中心的 z 位置
我们研究了与动态自旋 1 2 链耦合的 1D Z 2 格子规范理论的量子多体疤痕中的介子激发(粒子-反粒子束缚态),该链作为物质场。通过引入物理希尔伯特空间的弦表示,我们将疤痕态 j Ψ n;li 表示为所有具有相同弦数 n 和总长度 l 的弦基的叠加。对于小 l 疤痕态 j Ψ n;li,物质场的规范不变自旋交换关联函数随着距离的增加呈指数衰减,表明存在稳定的介子。然而,对于大的 l ,关联函数呈现幂律衰减,表示非介子激发的出现。此外,我们表明这种介子-非介子交叉可以通过淬灭动力学检测到,分别从两个低纠缠初始态开始,这在量子模拟器中是实验可行的。我们的研究结果扩展了格点规范理论中量子多体疤痕的物理学,并揭示了非介子态也可以表现出遍历性破坏。
crispr代表c的c luster r r e nterspaced s hort hort hort s to ailindromic r epeats,是细菌基因组的术语,该术语盛行,该术语代表用于精确执行细胞遗传质量变化的成分的编码。在发现CRI SPR之前,基因重新的方法已被缺乏精确和/或使用非常资源的方法。随着所谓的“基于核酸酶”的基因源技术的发展发生了变化。锌指(ZFN),1990年代后期(2)的转录活化剂样效应核酸酶(语音)和毛核酸酶。这些核心所见是将DNA链切开的酶,导致它们在遗传中的预定位置引起双弦骨折(两个DNA弦中的两个DNA串中的两个DNA弦)(图。1)。作为研究人员,我们可以利用前面提到的四个(ZFN,语音,巨核和CRISPR)分子基因剪刀在细胞中的DNA中“切割”一个特定位置。这些方法在此允许研究人员设计其基因剪刀以切成基因组的预定位置,从而可以有效,准确地改变,
学术头衔和职位 - 1985 年:都灵大学物理学荣誉学位(110/110 优异成绩) - 1985 – 1986 年:高中数学和物理教师 - 1987 – 1988 年:尼尔斯玻尔研究所 INFN 研究员(哥本哈根,丹麦) - 1988 – 1990 年:INFN、Sez 研究员。都灵大学 - 1990 – 1991 年:美国马萨诸塞州沃尔瑟姆布兰迪斯大学物理系高级 NATO-CNR 研究员 - 1991 – 1992 年:法国里昂高等师范学院理论物理实验室研究助理 - 1992 – 1994 年:高中物理教师 - 1994 – 2006 年:都灵大学理论物理系研究员 - 1994 年至今:都灵分院 INFN 研究助理 - 2006 年至今:都灵大学物理系理论物理副教授 学术服务 - 多名本科生和研究生的导师,许多博士学位期末考试委员会成员 - 许多博士后和永久职位选拔委员会成员 - Levi-Montalcini 和 FIRB 项目的裁判学校和会议 - “RTN 弦、超引力和规范理论冬季学校” 组委会成员(都灵,2003 年 1 月 7-11 日) - “TMR 规范理论、超对称和量子引力的量子方面冬季学校” 组委会成员(都灵,2000 年 1 月 26 日 - 2 月 2 日) - “从对偶模型到弦和膜” 研讨会组委会成员(都灵,2011 年 10 月 28-29 日) - “理论物理学的新前沿,科尔托纳 2018” 研讨会组委会主席,科尔托纳,2018 年 5 月 23-26 日 - “伽利略伽利莱研究所” 组织的在线会议“Cortona Young” 组委会成员(2020 年 5 月 27-29 日) 资助 -研究项目 MAST“弦理论的现代应用”,都灵大学“卓越科学”项目,由圣保罗公司资助(268,000 欧元)2013-2016 - FP7-PEOPLE-2009-IEF 项目 n 的主要协调员。 253534 CMADS “凝聚态 AdS/CFT 对应的应用” 2009-2011 - MIUR-PRIN 合同的本地协调员 2015MP2CX4 “规范理论和弦的非微扰方面” - MIUR-PRIN 合同的成员 2009KHZKRX-007 “宇宙的对称性和基本相互作用” - MIUR-PRIN 合同 2005023102,“弦、D 膜和规范理论”的成员 - MIUR-PRIN 合同 2003023852 项目“基本相互作用的物理学:规范理论、引力和弦”的成员 - MIUR-PRIN 合同 2001-1025492 项目“场论、超弦和超引力”的成员 - COST EU 项目的成员MP 1210 “弦理论宇宙”(工作组