可实现高斯图的概念属于拓扑学的数学领域,更具体地说,是封闭平面曲线的研究。对于一条封闭的平面曲线,例如(图1, a)所示,它的高斯码(或高斯字)可以通过用不同的符号(或数字)标记所有交点,然后沿着曲线一路行进并记下途中遇到的标签来获得。例如,(图1, a)所示曲线的高斯码之一是 123123。很容易看出,具有 n 个交点的曲线的高斯码长度为 2 n,它是一个双出现字,也就是说,每个符号在其中恰好出现两次。任何双出现词 w 都可以与其弦图相关联;它由一个圆圈组成,所有 w 符号都顺时针排列在圆圈周围,弦连接用相同符号标记的点,如图1,b 所示。如果可以从平面曲线中获得双出现词及其对应的弦图,则该词和图都称为可实现的。并非每个高斯图都是可实现的;例如,(图2)和(图3)中的图是不可实现的。