摘要环境温度决定了poikilothermic动物的发育速度,但尚不清楚这是否对脑线接线和Func+ON有后果。在视觉系统中,果蝇温度尺度的突触+c连接+vity,但是这种缩放的基本原因,跨神经回路的缩放性的一般性以及func+onal inal ninca+for行为的含量尚不清楚。在这里,我们结合了解剖学,Func+Onal和Theore+Cal方法,以洞悉依赖温度依赖的突触+C缩放的性质和后果。我们表明,突触+c缩放会导致不同的弹性亚电路中的异质弹性+效果,对气味驱动的行为产生了巨大的后果。第一个原则模型对神经系统和生物体的发展施加了不同的代谢约束,解释了这些发现,并概括以预测在生态相关的温度周期下的大脑布线。我们的数据认为,代谢约束决定了神经子电路内突触+c缩放的程度,并且在Synap+C合作伙伴的可用性时,Resul+ng电路架构和func+on con+ngent是con+ngent。突触+C缩放与合作伙伴的可用性之间的这种复杂相互作用强调了温度依赖性发育率+城市对poikilothermothermic动物行为的复杂影响。
海洋生物地球运动员组碳固隔机制中的碳泵。最初创建了这一问题,目的是解释在全球海洋45中观察到的DIC浓度增加,因此没有考虑有机碳在沉积物中的储存。后来将碳泵应用于海洋碳固换,在这种情况下,其定义包括有机碳转运到海洋内部,可能是沉积物。的确,IPCC 7对海洋碳泵的定义如下:溶解度泵是“一种物理化学过程,将溶解的无机碳从海面传递到其内部[…]的内部[...]驱动,主要由二氧化碳的溶解度驱动(CO 2)[CO 2)[…]和大型,热量,热氢键模式的海洋循环”;碳酸盐泵由“碳酸盐的生物形成,主要是由浮游生物产生的生物矿物质颗粒,这些颗粒沉入海洋内部,可能是沉积物[…]伴随着CO 2释放到周围的水,后来又释放到了大气中”;这是本研究的重点,生物碳泵将POC和DOC运送到“海洋内部,可能是沉积物”。
。cc-by 4.0国际许可(未经Peer Review尚未获得认证)是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。它是制作
摘要在年轻动物中神经系统的关键目标是学习运动技能。Songbirds 11学会唱歌为少年,提供了一个独特的机会来识别技能12获取的神经相关性。先前的研究表明,在歌曲获取过程中,声带皮层的尖峰速率可变性大大降低了13个,这表明从基于速率的神经控制到14的过渡到14毫秒至少的运动代码,已知是成人人声表现的已知。通过15区分尖峰模式的合奏是如何通过皮质神经元(“神经16词汇”)和尖峰模式与歌曲声学(“神经代码”)之间的关系17在歌曲获取过程中的变化,我们量化了18个少年bengence bengengale bengengale bengengale bengengalesection of to song ockisition。我们发现,尽管率变异性的预计会下降(峰值词汇的19个学习相关变化),但最年轻的20名歌手中神经代码的精度与成年人相同,峰值正时的1-2毫秒变化转移到21个量子上,差异很大。相比之下,较长的时间标准的爆发率失败了22,会影响少年动物和成年动物的运动输出。在变化的尖峰速率和行为可变性水平上,始终存在23毫秒的电动机编码24表明,与学习相关的皮质活动的变化反映了大脑更改其尖峰25词汇以更好地匹配潜在的运动代码,而不是在26代码本身的准确性中匹配基础运动代码。27
摘要。近年来,由于全球气候变化的影响和数据科学的快速发展,准确天气预报的重要性变得越来越突出。传统的预测方法通常难以处理气候数据中固有的复杂性和非线性。为了应对这些挑战,我们提出了一个基于多尺度卷积CNN-LSTM注意结构的天气预测模型,该模型是专门针对中国温度数据预测的时间序列预测的。模型集成了卷积神经网络(CNN),长期记忆(LSTM)网络和注意机制,以利用空间特征提取,时间序列建模的优势以及专注于重要特征的能力。该模型的开发过程包括数据收集,预处理,功能提取和模型构建。实验结果表明,该模型在高精度上预测温度趋势方面表现出色。最终计算的结果表明,平均平方误差(MSE)为1.978295,均方根误差(RMSE)为0.8106562。这项工作标志着将深度学习技术应用于气象数据,提供了一种有价值的工具,可以提高天气预测的准确性,并为城市规划,农业和能源管理等领域的决策提供必要的支持。
鉴于最近在电光采样在检测电磁场基态和超宽带压缩态的亚周期尺度量子涨落方面的实验应用方面取得的进展,我们提出了一种方法,将宽带电光采样从光谱方法提升为全量子断层扫描方案,能够在时间域中直接重建自由空间量子态。通过结合两种最近开发的方法来从理论上描述量子电光采样,我们以分析的方式将电光信号的光子计数概率分布与采样量子态的变换相空间准概率分布联系起来,该分布是采样中红外脉冲态和超宽带近红外探测脉冲之间时间延迟的函数。我们对噪声源进行了分类和分析,并表明在使用超宽带探测脉冲的量子电光采样中,可以观察到由于纠缠破坏而引起的热化。减轻热化噪声可以实现宽带量子态的断层重建,同时允许在亚周期尺度上访问其动态。
图1。城市峡谷的概念示意图代表CLMU中的城市景观(改编自Oleson等,2008a)。特性是颜色编码的:蓝色用于辐射,橙色用于热和绿色的形态学。请注意,屋顶和壁厚(尽管与城市形态相关)被认为是热特性,因为它们主要用作加权因素,以计算CLMU中峡谷表面的传导通量(Lawrance等,2018; Oleson等人,2010年)。165
预先注册的参与者:开尔文·德罗格梅尔(伊利诺伊大学),安德烈亚斯·普雷因(NCAR,主席),弗兰克·亚历山大(Argonne National Laboratory),Dee A Bates(伊利诺伊州Urbana-Champ),Christopher S. Brethertherthertry(Christopher S. Bretherton Instute) Chipilski(佛罗里达州立大学),Peter Dueben(ECMWF),Dale Durran(华盛顿大学),Pedram Hassanzadeh(芝加哥大学),Daniel S Katz,Daniel S Katz(伊利诺伊州Urbana-Champaign)玛格德堡(Magdeburg),Ruby Leung(Pacific Northwest National Laboratory),Maria Molina(马里兰州大学公园主席),John Shalf(劳伦斯·伯克利国家实验室),Maike Sonnewald(加利福尼亚大学戴维斯大学),邓肯·戴维斯大学,邓肯·沃森·帕里斯(duncan wats of Classion of oliver watt-mey and Instement and Instem and Instem and Insterme <预先注册的参与者:开尔文·德罗格梅尔(伊利诺伊大学),安德烈亚斯·普雷因(NCAR,主席),弗兰克·亚历山大(Argonne National Laboratory),Dee A Bates(伊利诺伊州Urbana-Champ),Christopher S. Brethertherthertry(Christopher S. Bretherton Instute) Chipilski(佛罗里达州立大学),Peter Dueben(ECMWF),Dale Durran(华盛顿大学),Pedram Hassanzadeh(芝加哥大学),Daniel S Katz,Daniel S Katz(伊利诺伊州Urbana-Champaign)玛格德堡(Magdeburg),Ruby Leung(Pacific Northwest National Laboratory),Maria Molina(马里兰州大学公园主席),John Shalf(劳伦斯·伯克利国家实验室),Maike Sonnewald(加利福尼亚大学戴维斯大学),邓肯·戴维斯大学,邓肯·沃森·帕里斯(duncan wats of Classion of oliver watt-mey and Instement and Instem and Instem and Insterme <
皮质回路的许多解剖和生理特征,从突触的生物物理特性到不同神经元类型之间的连接模式,都表现出从感觉区域到联想区域的层级轴的一致变化。值得注意的是,静息状态下神经活动的时间相关性尺度(称为内在时间尺度)在灵长类动物和啮齿动物中都沿着这一层级系统地增加,类似于空间受体场的规模和复杂性不断增加。然而,任务相关活动的时间尺度如何在大脑区域间变化,以及它们的层级组织是否在不同哺乳动物物种中一致出现仍未得到探索。在这里,我们表明,内在时间尺度和任务相关活动的时间尺度在猴子、大鼠和小鼠的皮质中都遵循类似的层级梯度。我们还发现,这些时间尺度在皮层和基底神经节中以类似的方式共同变化,而丘脑活动的时间尺度比皮层时间尺度短,并且不符合其皮层投影预测的层次顺序。这些结果表明,皮层时间尺度的层次梯度可能是哺乳动物大脑皮层内回路的普遍特征。
。cc-by 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2024年8月6日。 https://doi.org/10.1101/2023.08.04.551959 doi:Biorxiv Preprint