摘要 — 能源存储很可能在主要依赖可再生能源发电的未来电力系统中发挥关键作用。适当确定能源存储系统的规模对于可靠的未来电力系统至关重要。目前存在多种能源存储技术,每种技术都适合在不同的时间尺度上存储能源。有必要共同优化所有能源存储技术,以确保有足够的发电量来利用所有设备。这需要同时考虑短期和长期尺度。本文提出了一种随机优化算法,用于确定在各种时间尺度上运行的能源存储技术组合的规模。其应用以英国输电水平需求为例进行了演示,但可再生能源的规模已扩大到满足大部分能源需求。索引术语 — 能源存储、优化、电力系统规划、电力系统可靠性、随机系统
皮质回路的许多解剖和生理特征,从突触的生物物理特性到不同神经元类型之间的连接模式,都表现出从感觉区域到联想区域的层级轴的一致变化。值得注意的是,静息状态下神经活动的时间相关性尺度(称为内在时间尺度)在灵长类动物和啮齿动物中都沿着这一层级系统地增加,类似于空间受体场的规模和复杂性不断增加。然而,任务相关活动的时间尺度如何在大脑区域间变化,以及它们的层级组织是否在不同哺乳动物物种中一致出现仍未得到探索。在这里,我们表明,内在时间尺度和任务相关活动的时间尺度在猴子、大鼠和小鼠的皮质中都遵循类似的层级梯度。我们还发现,这些时间尺度在皮层和基底神经节中以类似的方式共同变化,而丘脑活动的时间尺度比皮层时间尺度短,并且不符合其皮层投影预测的层次顺序。这些结果表明,皮层时间尺度的层次梯度可能是哺乳动物大脑皮层内回路的普遍特征。
气体和气溶胶的抽象火排放会改变大气组成,并对气候,生态系统功能和人类健康产生重大影响。在建立景观中,温暖的气候和人类的扩张加剧了影响的影响,并呼吁更有效的管理工具。在这里,我们开发了一个全球预测系统,该系统使用过去的数据和气候变量预测每月排放,以1到6个月的时间为1到6个月。使用来自全球火灾排放数据库(GFED)的每月发射作为预测目标,我们将拟合一个统计时间序列模型,即具有外源变量(ARIMAX)的自回归积分移动平均模型,超过1,300个不同的区域。然后使用优化的参数预测未来排放。预测系统考虑了有关区域季节性季节性,长期趋势,最新观察以及代表大规模气候变化和当地风险天气的气候驱动因素的信息。我们通过预测因子和预测提前时间的不同组合对系统的预测技能进行了验证。参考模型将内源性和外源性预测因子与1个月的预测提前时间相结合,解释了全局发射异常的可变性的52%,大大超过了在预测期间假定持续排放的参考模型的性能。该系统还成功地解决了具有显着活动的区域中的详细空间模式。普通语言摘要全球火风险预计将来会增加,并且需要有效的预测和管理工具。这项研究弥合了近现场预测的努力与季节性前景的努力之间的差距,并代表了建立全球运营,烟雾和碳循环预测系统的一步。在这里,我们开发了一个统计预测系统,该系统可以预测1到6个月的销售时间的全球发射。建模系统认识到许多地区的未来活动与前几个月以及气候变量有关。通过比较预测的结果与观察结果,我们表明我们的建模系统在繁殖了发射的时间和空间变异性方面表现出色。我们认为,该系统可以集成到全球运营,烟雾和碳预测系统中,以更好地预测季节性至季节性时间尺度上的高火和低火的时期。
摘要:计算模型在生物世界中的适用性是一个活跃的辩论话题。我们认为,放弃类别之间的严格界限并采用依赖于观察者的务实观点是一条有用的前进道路。这种观点消除了由人类认知偏见(例如,过度简化的倾向)和先前的技术限制所驱动的偶然二分法,转而支持更连续的观点,这是进化、发育生物学和智能机器研究所必需的。形式和功能在自然界中紧密交织在一起,在某些情况下,在机器人技术中也是如此。因此,为生物医学或生物工程目的重塑生命系统的努力需要在多个尺度上预测和控制它们的功能。这很有挑战性,原因有很多,其中之一是生命系统在同一时间在同一地点执行多种功能。我们将其称为“多计算”——同一基质同时计算不同事物并将这些计算结果提供给不同观察者的能力。这种能力是生物体是一种计算机的重要方式,但不是我们所熟悉的线性、确定性计算机;相反,正如快速增长的物理计算文献所报道的那样,生物体是广义上的计算机,即它们的计算材料。我们认为,以观察者为中心的框架来处理进化和设计的系统所执行的计算将提高对中尺度事件的理解,就像它在量子和相对论尺度上已经做到的那样。为了加深我们对生命如何进行多计算以及如何说服它改变其中一个或多个功能的理解,我们可以首先创建多计算技术并学习如何改变它们的功能。在这里,我们回顾了生物和技术多计算的例子,并提出了这样一种观点:在同一硬件上重载不同的功能是一种重要的设计原则,有助于理解和构建进化和设计的系统。学习破解现有的多计算基底以及进化和设计新的基底将对再生医学、机器人技术和计算机工程产生巨大影响。
摘要在年轻动物中神经系统的关键目标是学习运动技能。Songbirds 11学会唱歌为少年,提供了一个独特的机会来识别技能12获取的神经相关性。先前的研究表明,在歌曲获取过程中,声带皮层的尖峰速率可变性大大降低了13个,这表明从基于速率的神经控制到14的过渡到14毫秒至少的运动代码,已知是成人人声表现的已知。通过15区分尖峰模式的合奏是如何通过皮质神经元(“神经16词汇”)和尖峰模式与歌曲声学(“神经代码”)之间的关系17在歌曲获取过程中的变化,我们量化了18个少年bengence bengengale bengengale bengengale bengengalesection of to song ockisition。我们发现,尽管率变异性的预计会下降(峰值词汇的19个学习相关变化),但最年轻的20名歌手中神经代码的精度与成年人相同,峰值正时的1-2毫秒变化转移到21个量子上,差异很大。相比之下,较长的时间标准的爆发率失败了22,会影响少年动物和成年动物的运动输出。在变化的尖峰速率和行为可变性水平上,始终存在23毫秒的电动机编码24表明,与学习相关的皮质活动的变化反映了大脑更改其尖峰25词汇以更好地匹配潜在的运动代码,而不是在26代码本身的准确性中匹配基础运动代码。27
自然语言理解被认为涉及将低级感官表征整合到越来越高级的表征层次中。为了研究人类大脑是否使用相同的通路来整合书面语言和口语,我们测试了这种层次结构的大脑表征是否在书面语言理解和口语理解之间共享。语言层次结构的不同级别在操作上被定义为时间尺度,其中每个时间尺度指的是语言刺激的频谱成分,这些成分在一定数量的单词中变化。体素编码模型用于确定不同语言时间尺度在大脑皮层中的表征方式,针对每种模态分别进行。编码模型是使用 fMRI BOLD 数据估计的,这些数据是在参与者阅读和聆听每种模态中的同一组自然语言叙述时记录的( Huth 等人,2016 年;Deniz 等人,2019 年)。这些模型揭示了两种模态之间皮层表面语言时间尺度表征的拓扑组织高度相似。我们的结果表明,大脑对语言时间尺度的表征很大程度上与刺激方式无关。
预先注册的参与者:开尔文·德罗格梅尔(伊利诺伊大学),安德烈亚斯·普雷因(NCAR,主席),弗兰克·亚历山大(Argonne National Laboratory),Dee A Bates(伊利诺伊州Urbana-Champ),Christopher S. Brethertherthertry(Christopher S. Bretherton Instute) Chipilski(佛罗里达州立大学),Peter Dueben(ECMWF),Dale Durran(华盛顿大学),Pedram Hassanzadeh(芝加哥大学),Daniel S Katz,Daniel S Katz(伊利诺伊州Urbana-Champaign)玛格德堡(Magdeburg),Ruby Leung(Pacific Northwest National Laboratory),Maria Molina(马里兰州大学公园主席),John Shalf(劳伦斯·伯克利国家实验室),Maike Sonnewald(加利福尼亚大学戴维斯大学),邓肯·戴维斯大学,邓肯·沃森·帕里斯(duncan wats of Classion of oliver watt-mey and Instement and Instem and Instem and Insterme <预先注册的参与者:开尔文·德罗格梅尔(伊利诺伊大学),安德烈亚斯·普雷因(NCAR,主席),弗兰克·亚历山大(Argonne National Laboratory),Dee A Bates(伊利诺伊州Urbana-Champ),Christopher S. Brethertherthertry(Christopher S. Bretherton Instute) Chipilski(佛罗里达州立大学),Peter Dueben(ECMWF),Dale Durran(华盛顿大学),Pedram Hassanzadeh(芝加哥大学),Daniel S Katz,Daniel S Katz(伊利诺伊州Urbana-Champaign)玛格德堡(Magdeburg),Ruby Leung(Pacific Northwest National Laboratory),Maria Molina(马里兰州大学公园主席),John Shalf(劳伦斯·伯克利国家实验室),Maike Sonnewald(加利福尼亚大学戴维斯大学),邓肯·戴维斯大学,邓肯·沃森·帕里斯(duncan wats of Classion of oliver watt-mey and Instement and Instem and Instem and Insterme <
1935 年,爱因斯坦、波多尔斯基和罗森 (EPR) 提出了一个量子理论悖论 [ Phys. Rev. 47 , 777 (1935) ]。他们考虑了两个量子系统,最初允许它们相互作用,后来它们分离。对一个系统进行的物理可观测量必须立即影响另一个系统中的共轭可观测量 — — 即使两个系统之间没有因果关系。作者认为这是量子力学不一致性的一个明显表现。在 Bjorken、Feynman 和 Gribov 提出的核子部分子模型中,部分子(夸克和胶子)被外部硬探针视为独立的。标准论点是,在被提升到无限动量框架的核子内部,在硬相互作用过程中,具有虚拟性 Q 的虚拟光子探测到的部分子与核子的其余部分没有因果关系。然而,由于色限制,部分子和其余核子必须形成色单重态,因此必须处于强关联量子态——因此我们在亚核子尺度上遇到了 EPR 悖论。在本文中,我们提出了一种基于部分子量子纠缠的解决这一悖论的方法。我们设计了一种纠缠实验测试,并使用大型强子对撞机的质子-质子碰撞数据进行测试。我们的结果为亚核子尺度上的量子纠缠提供了强有力的直接指示。
海洋生物地球运动员组碳固隔机制中的碳泵。最初创建了这一问题,目的是解释在全球海洋45中观察到的DIC浓度增加,因此没有考虑有机碳在沉积物中的储存。后来将碳泵应用于海洋碳固换,在这种情况下,其定义包括有机碳转运到海洋内部,可能是沉积物。的确,IPCC 7对海洋碳泵的定义如下:溶解度泵是“一种物理化学过程,将溶解的无机碳从海面传递到其内部[…]的内部[...]驱动,主要由二氧化碳的溶解度驱动(CO 2)[CO 2)[…]和大型,热量,热氢键模式的海洋循环”;碳酸盐泵由“碳酸盐的生物形成,主要是由浮游生物产生的生物矿物质颗粒,这些颗粒沉入海洋内部,可能是沉积物[…]伴随着CO 2释放到周围的水,后来又释放到了大气中”;这是本研究的重点,生物碳泵将POC和DOC运送到“海洋内部,可能是沉积物”。
将阳光转化为化学能,即光合作用,是地球上生命的主要能源。基于从电子到细胞量表的多尺度计算模型的可视化形式,以fulldome show earl the planet earth的诞生的摘录形式提出。这种可访问的视觉叙述显示了外行观众,包括孩子,如何通过一系列蛋白质捕获,转换和存储阳光的能量,从而使活细胞捕获。可视化是生物物理学家,可视化科学家和艺术家之间多年合作的结果,而这反过来又基于在结构和功能建模上进行了长达十年的实验计算合作,从而产生了对细菌性生物概念性细菌性生物概要细胞器的原子细节描述。该项目需要进行的软件进步导致了大量的性能和功能进步,包括硬件加速的电影射线跟踪和实例可视化,以进行有效的单元格式建模。所描述的能量转换步骤具有从电子到单元水平的功能整合,涵盖了近12个数量级的时间尺度。此原子细节描述独特地使人对人类最早的故事之一的现代重述 - 光与生命之间的相互作用。