按图建造 商品定义 机械零件 非结构零件和结构零件(包括环框、列板和尾翼);CNC 加工;包括飞行器的推力结构;非筒形面板。尺寸从小于 3 英尺到大于 20 英尺不等。 线路/线束 传输信号的电线和连接器的组件;包括原始线路 涡轮机械;叶片硬件 包括但不限于发动机零件(包括涡轮机械) 波纹管 机械膨胀节,所有材料 高光洁度流体组件 PCBA 印刷电路板;包括印刷线路板和电气组件 热绝缘 用于隔热或隔音的材料 软管 带或不带接头的柔性软管 密封件 在两个部件之间形成密封的填料或材料
为追求轻量化,机身采用硬壳式结构设计,主翼采用半硬壳式结构。机翼前缘和后缘采用由多条肋条和纵梁组成的骨架结构,机翼表面采用贴有太阳能电池的树脂薄膜。为方便运输,机身可分为两部分,主翼可分为三部分,各连接部分采用插拔式保持结构,既保持了刚度又减轻了重量。从尾翼、发动机舱、起落架等主要部件到机载设备支架等小部件,最大限度地利用了复合材料,实现了轻量化。因此,复合材料结构总重量仅为设计的35公斤。太阳能飞机成功获取了各种数据,并证实了为通信卫星和高空飞机建立通信环境的可能性。主要优势
飞机电子系统在雷击放电过程中的性能主要由机身和尾翼材料的参数决定[1]。近年来,由复合材料(碳纤维和玻璃纤维)制成的飞机机身设计得到了广泛的发展[2]。复合材料在无人机制造中应用最为广泛。用复合材料制造飞机机身需要开发新的方向,以确保电磁影响和相互作用期间的电磁兼容性 [3, 4]。机载设备在外部电磁影响下的抗噪声能力决定了整架飞机运行的质量和可靠性。最危险的外部电磁影响类型之一是雷电放电的影响。雷电对飞机的影响可分为两个部分:间接雷电放电(其特征是飞机附近云层之间的放电)和直接放电到飞机机身中[4, 5]。由于复合材料在飞机结构中的使用,确保机载设备的抗噪性和飞机的抗雷击能力的任务呈现出新的形态。
本文主要研究以太阳能电池为主要动力源的无人机 (UAV) 的空气动力学和设计。该过程包括三个阶段:概念设计、初步设计和飞行器计算流体动力学分析。电动无人机的主要缺点之一是飞行时间;从这个意义上说,挑战在于创建一种可以提高无人机续航能力的空气动力学设计。在本研究中,飞行任务从飞行器设计尝试达到最大高度开始;然后,无人机开始滑翔,并通过太阳能电池实现电池电量恢复。使用概念设计,空气动力学分析重点关注作为滑翔飞行器的无人机,计算从估计重量和空气动力学开始,并以最佳滑翔角度结束此阶段。事实上,气动分析是针对初步设计进行的;此步骤涉及无人机的机翼、机身和尾翼。为了实现初步设计,需要对气动系数进行估算,并进行计算流体动力学分析。
WT9 Dynamic LSA / Club 飞机是单引擎、双座(并排布置)、悬臂式低翼飞机,带有十字形尾翼。主要结构由玻璃和碳复合材料组成。飞机配备固定三轮起落架和可转向前轮。该飞机由 4 缸、水平对置、空气和水冷、化油器 4 冲程发动机 ROTAX 912 ULS2 驱动,最大功率为 73.5 kW (100 hp),转速为 5800 rpm。该飞机装有螺旋桨 EVRA PerformanceLine 175/xxx/805.5。它是 3 叶地面可调螺旋桨,直径为 1750 毫米 (68.9 英寸)。它具有木质核心叶片,由玻璃纤维覆盖,前缘加固。叶片安装在铝制轮毂中。螺旋桨轮毂连接到法兰和底板上,并固定在发动机的螺旋桨法兰上。复合材料整流罩固定在底板上。该飞机用于运动、休闲和旅游飞行,仅获准在 VFR 日间运行。
飞翼飞机的商业应用(如本文讨论的 Flying-V)有助于减少航空业产生的碳和氮排放。然而,由于没有尾翼,所有飞翼飞机的可控性都降低了。因此,机翼上控制面的位置和尺寸是一个不小的问题。本文重点介绍如何使用基于认证要求的离线操控质量模拟来解决此问题。在不同的飞行条件下,飞机必须能够执行认证机构定义的一组特定的机动。首先,离线模拟计算执行每个机动所需的升降舵、副翼和方向舵的最小控制权限。然后,根据所有机动的全局最小值,确定控制面的尺寸并沿机翼放置。所采用的气动模型结合使用了雷诺平均纳维-斯托克斯 (RANS) 和涡格法 (VLM) 模拟。使用VLM和用RANS模拟校准的VLM对控制面的控制权限进行评估,发现两者之间存在显著差异。
航空结构力学(AM)维护飞机机身和结构部件、飞行表面和控制装置、液压和气动控制和驱动系统和机构、起落架系统、空调、增压、视觉改善、氧气和其他公用系统、出口系统(包括座椅和座舱盖弹射系统和部件);制造和修理金属和非金属材料;监督机身工作中心的运行;维护飞机金属和非金属结构,包括机身、固定和可移动飞行表面、尾梁、门、面板、甲板、尾翼和座椅(弹射座椅除外);维护飞行控制装置和相关机制;维护液压动力存储和分配系统,包括主(主要和次要)、辅助(公用)和应急系统;维护液压驱动子系统;维护起落架系统,包括车轮和轮胎、刹车和应急系统;维护气动动力、储存和分配系统;维护升降机和绞车、机翼和尾翼折叠系统;维护发射和拦阻装置系统;执行液压部件维修和测试;并对飞机进行每日、特殊、每小时、无损和条件检查。
用于可视化管道流线和喷嘴/扩散器边界层分离的简单教学风洞装置 摘要 风洞测试长期以来一直是许多流体力学和空气动力学入门课程的重要组成部分。使用标准电子或机械平衡硬件可以轻松演示与各种气动形状上的阻力形成相关的粘性和压力阻力的基本物理机制。在小比例模型上对升力、阻力、俯仰力矩和压力分布的实验测量同样在支持此类入门课程中的基本流体力学理论方面发挥着重要作用。了解这些物理特性对于汽车空气动力学设计、最大限度地提高燃油经济性以及教授应用于飞机的空气动力学设计基本原理都非常重要。除了更常见的使用风洞作为研究尾翼安装测试模型的空气动力学的工具之外,风洞作为一个整体还提供了展示流体力学的几个重要原理以及将这些原理应用于工程设计的方法。风洞最近的一个应用是对整个风洞进行压力分布测量,以展示理想的无粘性流体流动行为,以及说明各种机械能源的相对重要性。
• 基本设计概念:极限载荷、极限载荷、安全系数、安全裕度 • 飞机载荷:惯性载荷、载荷系数;设计练习 • 金属:产品形式、物理和机械性能、失效模式、设计允许值;热机械加工 • 纤维增强层压复合材料:产品形式、物理和机械性能;失效模式;设计允许值;加工 • 材料选择:铝、钛、钢、复合材料和新兴结构材料; • 静态强度设计:高载荷拉伸结构;组合载荷;设计练习 • 机械接头:螺栓和铆钉;粘合和焊接接头;凸耳和配件;设计练习 • 薄壁结构:紧凑梁的弯曲和扭转回顾 • 薄壁结构:薄壁梁剪切流分析简介 • 半张力现场梁;设计练习; • 有限元方法简介 • 屈曲和刚度要求设计:薄壁和组合结构的屈曲 • 部件设计:机翼和尾翼、机身、起落架、附件 • 损伤容限设计:结构裂纹扩展;断裂力学简介;临界裂纹长度;分析练习;大面积疲劳损伤;检查安排 • 耐久性设计:疲劳;分析练习;腐蚀 • 认证:分析和验证要求、部件和飞机测试要求
1.简介 飞机是一种通过从空中获得推力而飞行的飞行器。它通过机翼的静态升力或动态升力,或者有时是飞机发动机的向下推力来抵消重力。围绕飞机的人体运动称为飞行。民用飞机由飞行员驾驶,但无人驾驶飞机可以由计算机间接控制或自主控制。飞机可以根据升力类型、飞机推力、用途等不同标准进行分类。较重的飞机(例如飞机)必须设法处理向下推的空气或气体,以便发生反应(根据牛顿运动定律)将飞机向上推。这种在空中的动态运动是“气动”一词的来源。有两种方法可以控制产生的快速上升力,即流线型升力和发动机推力。飞机的设计考虑了许多因素,例如客户和制造商的要求、安全协议、物理和财务要求。对于某些飞机型号,设计过程由国家适航机构控制。飞机的主要部件通常分为三类: 1.结构包括主要承重部件和耦合设备。2.动力系统包括动力源和相关设备。3.飞行包括控制、导航和通信系统,通常是电气性质的。1.1 飞机结构 飞机由五个主要辅助部分组成,即:1.机身:机身是机身的基本结构,其他所有部分都连接在其上。机身包括驾驶舱或飞行甲板、旅客舱和货舱。2.机翼:机翼是飞机最基本的升力输送部件。机翼的布置根据飞机类型及其刺激而变化。大多数飞机的设计使得机翼的外端比机翼与机身连接的地方高。3.尾翼(尾部结构):尾翼或尾部提供飞机的安全性和控制力。4.动力装置(推进系统):飞机动力装置分为五种类型。5.纵梁与壳体或肋骨可靠地关联。涡轮螺旋桨发动机用于较低速度,冲压喷气发动机用于高速飞机,涡扇发动机用于0.3马赫至2马赫,涡轮喷气发动机用于高速飞机,以及基本低速飞机的发动机。起落架:飞机的起落架将飞机支撑在地面上,平稳飞行,保持飞行和着陆的平稳。 1.2 纵梁和接头 在飞机机身中,纵梁连接到成型器(也称为机匣)并沿着飞机的纵向方向运行。它们主要负责将蒙皮上的流线型重量传递到边框和成型器中。在机翼或稳定器中,纵梁横向运行并连接在肋骨之间。这里的主要功能还包括将机翼上的扭转力转移到肋骨上并进行战斗。有时会使用“纵梁”和“纵梁”这两个词。纵梁通常比纵梁承受更大的重量,并且将蒙皮重量转移到内部结构上。纵梁通常是