预印本(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此版本的版权持有人于2024年1月30日发布。 https://doi.org/10.1101/2024.01.30.577986 doi:Biorxiv Preprint
背景:流行病学研究表明,血液尿素氮(BUN)和血清白蛋白降低可以独立地预测慢性阻塞性肺疾病(COPD)患者的不良临床结局。但是,在患有COPD的重症患者中,BUN-Albumin比率(BAR)的预测性能仍有待证实。这项研究旨在调查重症监护病房(ICU)患者与COPD的BAR和全因死亡率之间的关联。方法:这是一项回顾性研究,其中包括每次ICU入院的第一天的COPD患者和血清白蛋白价值,并且从EICU协作研究数据库中获得了数据。所包含的COPD患者被分为三组(T1-T3)。多元逻辑回归和COX比例危害模型分别用于检查BAR和全因院内和ICU死亡率之间的关联。Kaplan – Meier曲线,以评估三组之间的生存差异,并将差异与对数贷方测试进行了比较。结果:最终分析中总共包括4037名患者,院内和ICU死亡率分别为11.79%和6.51%。多元逻辑回归分析表明,连续条是院内死亡率的重要风险预测因子(OR:1.039,95%CI:1.026–1.052,p <0.001)和ICU死亡率(OR:1.030,95%CI:1.015%CI:1.015-1.045,P <0.045,P <0.001)。相关的亚组分析表明,这种正相关可能会在某些人口环境中有所不同。COX比例危害模型显示,最高的bar三位杆(T3)患者与院内死亡率的较高风险显着相关(HR:1.983,95%CI:1.419–2.772,p <0.001)和ICU死亡率(HR:2.166,95%CI:1.3333-3.418,p <0.418,P <0.418,P <0.418,P <0.418,p <0.001。Kaplan – Meier曲线表明,在三个三分之一组中,全因死亡率的存活差在统计学上是显着的(log-rank p <0.0001)。结论:高水平的酒吧与危重患者COPD患者的全因死亡率增加有关。作为一种创新且有前途的生物标志物,BAR可能有助于预测COPD患者的高死亡风险。关键词:慢性阻塞性肺部疾病,血尿氮,血清白蛋白,全因死亡率,重症监护病房
纳米肥料是最重要的农业领域,由于其能力提高产量,提高土壤生育能力,减少污染并为微生物带来了有利的环境,因此吸引了土壤科学家以及环保主义者的注意。因此,考虑到这些方面,在拉比(Rabi),2022-23期间进行了野外实验,以评估“纳米尿素对生长,产量属性和小麦在灌溉条件下的影响”。该试验在随机块设计中具有不同的13处理和三种复制。结果表明,不同纳米尿素治疗的影响对小麦的产量和产量属性显着影响。通过在分丁和接头时建议的N +两种尿素(5%)的治疗记录谷物产量(54.08 Q/ha)(T 4)。在耕作和接头时建议的N +两次喷雾剂(t 4)的n +两种喷雾剂(t 4)的相同处理下,发现了更高的生物量产率(140.96 Q/ha)。归因性字符的收益率也会因不同的治疗而显着影响。明显更高的植物高度(82.40厘米)和每平方英尺的有效分ers米(505)通过建议N +两次尿素喷雾剂(5%)在分丁和接头(T 4),而治疗对植物支架的处理没有影响,1000粒重(G)和每个峰值的谷物数量。
在古吉拉特邦卡洛尔的纳米生物技术研究中心。这种创新与“ Atmanirbhar Bharat”和“ Atmanirbhar Krishi”的愿景保持一致,旨在减少土壤中的尿素使用。IFFCO是一个主要的合作社,该协会于2021年5月31日在年度通用机构会议上引入Nano Urea,并于2021年6月5日举行仪式。这一突破代表了现代农业的一个里程碑,有望提高效率和较低的环境破坏。IFFCO副主席Shri Dilip Shangani强调了Nano Urea在保护环境和确保粮食安全方面的重要性。 使用传统尿素会造成重大的生态系统危害,从而导致土壤和水污染,空气污染和间接全球变暖。 它还引起氨排放,土壤酸化和水的富营养化。 从长远来看,尿素残留物会损害土壤健康,延迟作物成熟,降低产量并增加对害虫和疾病的脆弱性,因为它们也吸引了大量食物。 纳米尿素能够通过提供更高的营养利用效率(NUE)和环境可持续性来解决这些挑战,这对于未来一代和粮食安全的幸福感至关重要(Kajal Kiran和Kailash Chandra Samal,2021年)。IFFCO副主席Shri Dilip Shangani强调了Nano Urea在保护环境和确保粮食安全方面的重要性。使用传统尿素会造成重大的生态系统危害,从而导致土壤和水污染,空气污染和间接全球变暖。它还引起氨排放,土壤酸化和水的富营养化。从长远来看,尿素残留物会损害土壤健康,延迟作物成熟,降低产量并增加对害虫和疾病的脆弱性,因为它们也吸引了大量食物。纳米尿素能够通过提供更高的营养利用效率(NUE)和环境可持续性来解决这些挑战,这对于未来一代和粮食安全的幸福感至关重要(Kajal Kiran和Kailash Chandra Samal,2021年)。
本文在两级价格波动和初始利润分配下调查了供应链中的最佳有序策略。通过利用Copula函数来对价格波动和不确定需求之间的复杂关系进行建模,该研究既开发了连续和离散的决策模型。提出了一种离散算法以近似最佳解决方案,其收敛严格证明。数值实验表明,利润分配比率显着影响最佳订单数量和整体供应链利润。价格波动,特别是在折扣水平上,提出了关键的挑战,需要灵活和适应性的订购策略。该研究还研究了不同的副群岛关系对最佳订购决策的影响,揭示了市场条件的变化(从中等价格敏感性对高波动性)如何影响最佳订单数量。通过检查利润分配合同的订单策略,本研究提供了有关供应链成员如何合作导航不确定市场的新观点。这些发现为经理提供了可行的见解,以减轻风险,改善协调并抓住新的机会。扩展传统模型以结合价格波动和利润分配,这项研究为供应链管理做出了理论和实践贡献,提供了强大的策略来增强供应链的弹性。
幽门螺杆菌(H. pylori)是一种革兰氏阴性、微需氧、螺旋状细菌,定植于人类胃粘膜(Malfertheiner et al., 2023),存在于全球超过 50% 人口的肠道中(García et al., 2014)。虽然感染通常无症状,但慢性感染可导致胃炎、胃溃疡、粘膜相关淋巴组织 (MALT) 淋巴瘤和胃腺癌(Diaconu et al., 2017;Kusters et al., 2006)。目前,H. pylori 感染的治疗多为质子泵抑制剂 (PPI) 与两种抗生素 (克拉霉素、甲硝唑或左氧氟沙星) 联合使用 (Lee 等,2022;Azrad 等,2022)。然而,许多流行病学研究表明,近年来 H. pylori 抗生素耐药率有所上升,影响了治疗效果 (Azrad 等,2022;Kuo 等,2017)。
Rahul Raj、Umesha C 和 Pranav Kumar DOI:https://doi.org/10.33545/26174693.2024.v8.i7Si.1606 摘要 田间试验于 2023 年喀里夫季节在农学系作物研究农场进行。实验采用随机区组设计,共十个处理,重复三次。处理细节如下:T 1:磷 40 千克/公顷 + 纳米尿素 1 毫升/升,T 2:磷 60 千克/公顷 + 纳米尿素 1 毫升/升,T 3:磷 80 千克/公顷 + 纳米尿素 1 毫升/升,T 4:磷 40 千克/公顷 + 纳米尿素 3 毫升/升,T 5:磷 60 千克/公顷 + 纳米尿素 3 毫升/升,T 6:磷 80 千克/公顷 + 纳米尿素 3 毫升/升,T 7:磷 40 千克/公顷 + 纳米尿素 4 毫升/升,T 8:磷 60 千克/公顷 + 纳米尿素 4 毫升/升,T 9:磷 80 千克/公顷 + 纳米尿素 4 毫升/升和对照地块。试验结果表明,施用 60 kg/ha 磷肥和 4 ml/l 纳米尿素(处理 8)可显著提高植株高度(202.00 cm)、最大植株干重(310.00 g/plant)、最大作物生长率(27.00 g/m 2 /day)、每穗最大行数(12.93)、行粒数(22.67)、种子指数(22.70 g)、籽粒产量(5.54 t/ha)、秸秆产量(9.92 t/ha)、收获指数(35.86%)。关键词:玉米,磷,纳米尿素,生长和产量。介绍玉米(Zea mays L.)是继水稻和小麦之后最重要的谷物作物之一,在全球农业中占有突出地位。在印度,玉米仅次于水稻和小麦,位居第三。在印度,玉米用于谷物和饲料,以及家禽和牛饲料混合物的成分和其他工业用途。玉米也称为玉蜀黍,是世界上最重要和最具战略意义的作物之一。其原产地是墨西哥(中美洲)。它是一种 C4 植物,被称为“谷物皇后”,因为它具有高生产潜力和跨季节的广泛适应性。它高效利用太阳能,具有巨大的增产潜力,被称为“奇迹作物”。玉米通过优质蛋白质在确保粮食安全和营养安全方面发挥着至关重要的作用。玉米的营养成分(每 100 克)如下:蛋白质 4 克。碳水化合物 30 克,膳食纤维 3.5 克,脂肪 1.5 克,糖 3.6 克,钙 4 毫克,锌 0.72 毫克等。(Dragana 等人,2015 年)[8]。玉米植株的每个部分都具有经济价值(谷粒、叶子、茎秆、穗和穗轴),都可用于生产各种食品和非食品产品。全球 170 多个国家种植玉米,面积达 1.88 亿公顷,产量达 14.23 亿公吨。自 2005 年以来,印度玉米种植面积位居第四位,为 989 万公顷,年产量为 3165 万吨,位居第六。在印度各邦中,中央邦和卡纳塔克邦的玉米种植面积最高(各占 15%),其次是马哈拉施特拉邦(10%)、拉贾斯坦邦(9%)、北方邦(8%)、比哈尔邦(7%)、特伦甘纳邦(6%)。目前,印度生产的玉米 47% 用于家禽饲料,13% 用于牲畜饲料,13% 用于食品,淀粉工业消耗约 14%,加工食品占 7%,6% 用于出口和其他用途。(IIMR,2021 年)。磷的应用会影响植物的生长行为。它是生长、糖和淀粉的利用、光合作用、细胞核形成和细胞分裂、脂肪和蛋白形成所必需的。光合作用和碳水化合物代谢产生的能量储存在磷酸盐化合物中,供以后生长和繁殖使用(Ayub 等人,2002 年)[5]。它在植物体内很容易转移,随着植物细胞的形成,从较老的组织转移到较年轻的组织
通过通过光合作用从大气中捕获碳并将其存储在生物质和土壤中,从而增强碳的下沉。农林业很容易捆绑缓解和适应策略,并为贫穷农民确保粮食安全提供了多种途径,同时促进了缓解气候变化。此外,农林业系统的多功能性质不仅有助于缓解气候变化,而且还促进了可持续的土地管理实践。农林业提供的各种生态系统服务,例如侵蚀控制,水调节和栖息地提供,将其定位为缓解气候变化的整体方法,与基于自然解决方案的原理保持一致(Garrity等人。 2010)。2010)。
亚利桑那大学的莎拉·利文斯顿(Sarah Livingston)发表的一项令人兴奋的研究表明,尿石素A和维生素D如何配合在神经内分泌细胞中扩增5-羟色胺基因的表达。尿石蛋白A增强了维生素D在色氨酸代谢中诱导5-羟色胺诱导5-羟色胺的能力,即TPH2,并起到通过VDR VDRE刺激基因表达的1,25D作用的增强作用。瘦素通常会抑制脑衍生的5-羟色胺的合成和释放,有利于骨质量应计,食欲和能量代谢。维生素D抑制脂肪细胞瘦素并诱导TPH2以增强大脑皮层中的5-羟色胺继电器信号传导。因此,维生素D和尿素A的结合是在中枢神经系统中提高5-羟色胺的吸引力,并可能改善情绪。
1。rd和al。呼吸剧加热。2021; 43(3):341-348。 doi:1016/j.htct.2020.06.006 2。他施舍。剧型。2020; 99:1505-1 doi:10.10.1007/s0027-020-0404052-Z 3。in:Statsearch出版; 2023。2023年7月31日访问。m和al。J Manag Sec Pharm2020; 26(12)(补充B):S8-S15。招募米切尔。SM Clin Med Oncol2017; 1(1):1001。 6。 in:Statsearch 出版; 2023。 2023年7月17日访问。 JL Dotson,Lebowicz Y. in:Statsearch 出版; 2023。 2022年7月18日访问。 n等。 J Clin Med 2021; 10:1026。 doi:10.390/jcm10051026 9。 Brodsky RA。 血液 2014; 124:2804-2811。 doi:10.1182/Year2014-02-52128 10。 miyata t和al。 n Engel J Med。 1994; 330:249-2 11。 Bessler M和Al。 J. 1994; 13(1):110-1 12。 miyata t和al。 科学。 1993; 259:1318-1 13。 JF和Al。 血。 1992; 79:1400-1403。2017; 1(1):1001。6。in:Statsearch出版; 2023。2023年7月17日访问。JL Dotson,Lebowicz Y.in:Statsearch出版; 2023。2022年7月18日访问。n等。J Clin Med 2021; 10:1026。 doi:10.390/jcm10051026 9。 Brodsky RA。 血液 2014; 124:2804-2811。 doi:10.1182/Year2014-02-52128 10。 miyata t和al。 n Engel J Med。 1994; 330:249-2 11。 Bessler M和Al。 J. 1994; 13(1):110-1 12。 miyata t和al。 科学。 1993; 259:1318-1 13。 JF和Al。 血。 1992; 79:1400-1403。J Clin Med2021; 10:1026。 doi:10.390/jcm10051026 9。Brodsky RA。 血液 2014; 124:2804-2811。 doi:10.1182/Year2014-02-52128 10。 miyata t和al。 n Engel J Med。 1994; 330:249-2 11。 Bessler M和Al。 J. 1994; 13(1):110-1 12。 miyata t和al。 科学。 1993; 259:1318-1 13。 JF和Al。 血。 1992; 79:1400-1403。Brodsky RA。血液2014; 124:2804-2811。 doi:10.1182/Year2014-02-52128 10。 miyata t和al。 n Engel J Med。 1994; 330:249-2 11。 Bessler M和Al。 J. 1994; 13(1):110-1 12。 miyata t和al。 科学。 1993; 259:1318-1 13。 JF和Al。 血。 1992; 79:1400-1403。2014; 124:2804-2811。 doi:10.1182/Year2014-02-52128 10。miyata t和al。n Engel J Med。1994; 330:249-211。Bessler M和Al。J.1994; 13(1):110-112。miyata t和al。科学。1993; 259:1318-113。JF和Al。血。1992; 79:1400-1403。1992; 79:1400-1403。14。J和Al。单元格。1993; 73-711。 15。 Wilcox La和Al。 血液 1991; 78(3):820-8 16。 Medof Me and Al。 Proc Natl Sci Acad A. 1985; 82(9):2980-2 17。 MH等人。 J Clin Invest。 1989; 84:1387-1394。 18。 Davies A和Al。 J扩展。 1989; 170:637-6 19。 m和al。 J Spec Pharm Manag。 2020; 26(12)(补充B):S3-S8 20。 rj和al。 接触Oncol Haematol 2021; 17:84-89。 doi:10.17925/ohr.2021.2.2.84 21。 Parker CJ。 血液学和SOC雌醇教育 2016; 2016(1):208-2 22。 illingworth a和al。 细胞细胞t。 2018; 94-66。 doi:10.1002/cycle.b.21609 23。 Southernland Dr and Al。 细胞细胞t。 2018; 94(1):23-4 doi:10.1002/cycle.b.21610 24。 肥胖的B和Al。 白血病。 2021; 35:323-3231。 doi:10.1038/s41375-021-01190-9 25。 dingli d和al。 剧型。 2023; 102(7):1637-1644。 doi:10.10.1007/s0027-05-05269-4 26。 maninal p al。 印度J仅呼吸蛇出血。 2017; 33(4):453-462。 doi:10.1007/s1288-017-0868-y 27。 Parker C和Al。 血。 2005; 106(12):3699-3 doi:10.1182/Blood-2005-1717。 res螺栓。 2015; 136(2):274-281。1993; 73-711。15。Wilcox La和Al。 血液 1991; 78(3):820-8 16。 Medof Me and Al。 Proc Natl Sci Acad A. 1985; 82(9):2980-2 17。 MH等人。 J Clin Invest。 1989; 84:1387-1394。 18。 Davies A和Al。 J扩展。 1989; 170:637-6 19。 m和al。 J Spec Pharm Manag。 2020; 26(12)(补充B):S3-S8 20。 rj和al。 接触Oncol Haematol 2021; 17:84-89。 doi:10.17925/ohr.2021.2.2.84 21。 Parker CJ。 血液学和SOC雌醇教育 2016; 2016(1):208-2 22。 illingworth a和al。 细胞细胞t。 2018; 94-66。 doi:10.1002/cycle.b.21609 23。 Southernland Dr and Al。 细胞细胞t。 2018; 94(1):23-4 doi:10.1002/cycle.b.21610 24。 肥胖的B和Al。 白血病。 2021; 35:323-3231。 doi:10.1038/s41375-021-01190-9 25。 dingli d和al。 剧型。 2023; 102(7):1637-1644。 doi:10.10.1007/s0027-05-05269-4 26。 maninal p al。 印度J仅呼吸蛇出血。 2017; 33(4):453-462。 doi:10.1007/s1288-017-0868-y 27。 Parker C和Al。 血。 2005; 106(12):3699-3 doi:10.1182/Blood-2005-1717。 res螺栓。 2015; 136(2):274-281。Wilcox La和Al。血液1991; 78(3):820-816。Medof Me and Al。Proc Natl Sci Acad A.1985; 82(9):2980-217。MH等人。J Clin Invest。1989; 84:1387-1394。 18。 Davies A和Al。 J扩展。 1989; 170:637-6 19。 m和al。 J Spec Pharm Manag。 2020; 26(12)(补充B):S3-S8 20。 rj和al。 接触Oncol Haematol 2021; 17:84-89。 doi:10.17925/ohr.2021.2.2.84 21。 Parker CJ。 血液学和SOC雌醇教育 2016; 2016(1):208-2 22。 illingworth a和al。 细胞细胞t。 2018; 94-66。 doi:10.1002/cycle.b.21609 23。 Southernland Dr and Al。 细胞细胞t。 2018; 94(1):23-4 doi:10.1002/cycle.b.21610 24。 肥胖的B和Al。 白血病。 2021; 35:323-3231。 doi:10.1038/s41375-021-01190-9 25。 dingli d和al。 剧型。 2023; 102(7):1637-1644。 doi:10.10.1007/s0027-05-05269-4 26。 maninal p al。 印度J仅呼吸蛇出血。 2017; 33(4):453-462。 doi:10.1007/s1288-017-0868-y 27。 Parker C和Al。 血。 2005; 106(12):3699-3 doi:10.1182/Blood-2005-1717。 res螺栓。 2015; 136(2):274-281。1989; 84:1387-1394。18。Davies A和Al。 J扩展。 1989; 170:637-6 19。 m和al。 J Spec Pharm Manag。 2020; 26(12)(补充B):S3-S8 20。 rj和al。 接触Oncol Haematol 2021; 17:84-89。 doi:10.17925/ohr.2021.2.2.84 21。 Parker CJ。 血液学和SOC雌醇教育 2016; 2016(1):208-2 22。 illingworth a和al。 细胞细胞t。 2018; 94-66。 doi:10.1002/cycle.b.21609 23。 Southernland Dr and Al。 细胞细胞t。 2018; 94(1):23-4 doi:10.1002/cycle.b.21610 24。 肥胖的B和Al。 白血病。 2021; 35:323-3231。 doi:10.1038/s41375-021-01190-9 25。 dingli d和al。 剧型。 2023; 102(7):1637-1644。 doi:10.10.1007/s0027-05-05269-4 26。 maninal p al。 印度J仅呼吸蛇出血。 2017; 33(4):453-462。 doi:10.1007/s1288-017-0868-y 27。 Parker C和Al。 血。 2005; 106(12):3699-3 doi:10.1182/Blood-2005-1717。 res螺栓。 2015; 136(2):274-281。Davies A和Al。J扩展。1989; 170:637-619。m和al。J Spec Pharm Manag。2020; 26(12)(补充B):S3-S820。rj和al。接触Oncol Haematol2021; 17:84-89。 doi:10.17925/ohr.2021.2.2.84 21。Parker CJ。 血液学和SOC雌醇教育 2016; 2016(1):208-2 22。 illingworth a和al。 细胞细胞t。 2018; 94-66。 doi:10.1002/cycle.b.21609 23。 Southernland Dr and Al。 细胞细胞t。 2018; 94(1):23-4 doi:10.1002/cycle.b.21610 24。 肥胖的B和Al。 白血病。 2021; 35:323-3231。 doi:10.1038/s41375-021-01190-9 25。 dingli d和al。 剧型。 2023; 102(7):1637-1644。 doi:10.10.1007/s0027-05-05269-4 26。 maninal p al。 印度J仅呼吸蛇出血。 2017; 33(4):453-462。 doi:10.1007/s1288-017-0868-y 27。 Parker C和Al。 血。 2005; 106(12):3699-3 doi:10.1182/Blood-2005-1717。 res螺栓。 2015; 136(2):274-281。Parker CJ。血液学和SOC雌醇教育2016; 2016(1):208-222。illingworth a和al。细胞细胞t。2018; 94-66。 doi:10.1002/cycle.b.21609 23。Southernland Dr and Al。 细胞细胞t。 2018; 94(1):23-4 doi:10.1002/cycle.b.21610 24。 肥胖的B和Al。 白血病。 2021; 35:323-3231。 doi:10.1038/s41375-021-01190-9 25。 dingli d和al。 剧型。 2023; 102(7):1637-1644。 doi:10.10.1007/s0027-05-05269-4 26。 maninal p al。 印度J仅呼吸蛇出血。 2017; 33(4):453-462。 doi:10.1007/s1288-017-0868-y 27。 Parker C和Al。 血。 2005; 106(12):3699-3 doi:10.1182/Blood-2005-1717。 res螺栓。 2015; 136(2):274-281。Southernland Dr and Al。细胞细胞t。2018; 94(1):23-4 doi:10.1002/cycle.b.21610 24。肥胖的B和Al。白血病。2021; 35:323-3231。 doi:10.1038/s41375-021-01190-9 25。dingli d和al。剧型。2023; 102(7):1637-1644。 doi:10.10.1007/s0027-05-05269-4 26。maninal p al。印度J仅呼吸蛇出血。2017; 33(4):453-462。 doi:10.1007/s1288-017-0868-y 27。 Parker C和Al。 血。 2005; 106(12):3699-3 doi:10.1182/Blood-2005-1717。 res螺栓。 2015; 136(2):274-281。2017; 33(4):453-462。 doi:10.1007/s1288-017-0868-y 27。Parker C和Al。 血。 2005; 106(12):3699-3 doi:10.1182/Blood-2005-1717。 res螺栓。 2015; 136(2):274-281。Parker C和Al。血。2005; 106(12):3699-3 doi:10.1182/Blood-2005-1717。 res螺栓。 2015; 136(2):274-281。2005; 106(12):3699-3 doi:10.1182/Blood-2005-1717。res螺栓。2015; 136(2):274-281。2015; 136(2):274-281。29。Borowitz MJ等。细胞仪B临床细胞症。2010; 78(4):211-230。 doi:10.1002 /cyto.B.20525 30。< /div>Arup实验室。2024年6月5日访问。https://ltd.aruplab.com/tests/pub/2005006 31。生物。2024年6月5日访问。https://www.bioreference.com/physicians/resources/test-directory/?tc = 5564 32。克利夫兰诊所实验室。2024年6月5日访问。https://clevelandcliniclabs.com/high-sensitivity-flow-cytometry-for-paroxysmal-nocturnal-nocturnal-hemoglobinuria/33。CSI实验室。2024年6月5日访问。https://www.csilaboratories.com/flow/pnh-high-sensitivity/34。Dahl-Chase诊断服务。2024年6月5日访问。http:// dahlchase。host4kb.com/article/aa-00231/15/ 35。Dahl-Chase诊断服务。2024年6月5日。hemagogenix。2024年6月5日访问。https://hematogenix.com/technologies/flow-cytometry 37。告知诊断。2024年6月5日访问。https://www.informdx.com/wp- content/uploads/mls-20-0100.4-client-resource-resource-guide.pdf 38。labcorp。2024年6月5日访问。https://oncology.labcorp.com/tests/zzio-295/pnh--评估39。Mayo诊所实验室。 2024年6月5日访问。https://www.mayocliniclabs.com/test-catalog/overview/62139#specimen 40。 Mayo诊所实验室。 2024年6月5日访问。https://www.mayocliniclabs.com/test-catalog/overview/62139#fees-and-codes 41。Mayo诊所实验室。2024年6月5日访问。https://www.mayocliniclabs.com/test-catalog/overview/62139#specimen 40。Mayo诊所实验室。 2024年6月5日访问。https://www.mayocliniclabs.com/test-catalog/overview/62139#fees-and-codes 41。Mayo诊所实验室。2024年6月5日访问。https://www.mayocliniclabs.com/test-catalog/overview/62139#fees-and-codes 41。密歇根州医学实验室。2024年6月5日访问。https://mlabs.umich.edu/tests/pnh-marker-panel 42。分子病理实验室网络。2024年6月5日访问。https://mplnet.com/test-menu/ 43。分子病理实验室网络。2024年6月5日访问。https://www.mplnet.com/cellular-免疫学/44。新基因学。2024年6月5日访问。https://neogenomics.com/test-menu/high-sensitivity-pnh-evaluation 45。俄勒冈州健康与科学大学实验室服务。 2024年6月5日访问。https://www.ohsu.edu/lab-services/pnh-test-high-sensitivity 46。 pathgroup。 2024年6月5日访问。https://pathconnect.pathgroup.com/testmenu/#/testinfo/ue5irq%3D%3D47。 任务诊断。 2024年6月5日。 UF病理实验室。 2024年6月5日。 爱荷华大学诊断实验室。 2024年6月5日访问。https://www.healthcare。 uiowa.edu/path_handbook/rhandbook/test1123.html 50。 匹兹堡大学。 2024年6月5日访问。https://www.path.pitt.edu/divisision/dives-laboratory-medicine/discion-clinical-clinical-hematopathology/clinical-flow-cytertry-0 51。俄勒冈州健康与科学大学实验室服务。2024年6月5日访问。https://www.ohsu.edu/lab-services/pnh-test-high-sensitivity 46。pathgroup。2024年6月5日访问。https://pathconnect.pathgroup.com/testmenu/#/testinfo/ue5irq%3D%3D47。任务诊断。2024年6月5日。UF病理实验室。2024年6月5日。爱荷华大学诊断实验室。2024年6月5日访问。https://www.healthcare。uiowa.edu/path_handbook/rhandbook/test1123.html 50。匹兹堡大学。2024年6月5日访问。https://www.path.pitt.edu/divisision/dives-laboratory-medicine/discion-clinical-clinical-hematopathology/clinical-flow-cytertry-0 51。德克萨斯大学医学分公司。2024年6月5日访问。https://www.utmb.edu/lsg2/home/details?id=1366 52。Kulasekararaj ag等。UW医学实验室医学和病理学。 2024年6月5日访问。https://dlmp.uw.edu/test-guide/view/pnhflo 53。 血液复兴。 2023; 59:101041。 doi:10.1016/j.blre.2023.101041UW医学实验室医学和病理学。2024年6月5日访问。https://dlmp.uw.edu/test-guide/view/pnhflo 53。血液复兴。2023; 59:101041。 doi:10.1016/j.blre.2023.101041