3.7 计算精度................................................................................................ 87 3.7.1 连续效应.................................................................................... 87 3.8 总结.............................................................................................................. 90 4 斯托克斯积分与 FFT 91 4.1 简介................................................................................................ 91 4.2 类斯托克斯积分变换...................................................................................... 93 4.3 确定性方法............................................................................................. 95 4.4 核属性............................................................................................. 96 4.5 随机方法............................................................................................. 98 4.5.1 重力功率谱与自相关函数............................................................. 99 4.6 随机重力模型与斯托克斯积分............................................................. 104 4.6.1 环平均重力的期望值 ) ( ψ g ∆ ............ 104 4.6.2 不同的4.6.3 内核的不同部分............................................................................... 108 4.7 在有限区域上计算的大地测量内核的傅里叶变换 108 4.8 总结.............................................................................................. 113 5 地球位势垂直参考系统 114 5.1 简介......................................................................................................... 114 5.2 地球位势计算原理.................................................................................... 116 5.3 水平测量......................................................................................................... 117 5.4 新高度系统......................................................................................................... 119 5.5 为什么我们需要物理高度系统?......................................................................... 121 5.6 我们如何绘制空间中的水平表面? ................................................ 122 5.7 统一垂直参考系的标准............................................................... 124 5.7.1 潮汐系统............................................................................... 125 5.8 计算重力位能模型............................................................... 130 5.8.1 第一阶段重力场建模....................................................... 130 5.8.2 第二阶段向下延续与变换..................................................... 131 5.8.3 第三阶段向上延续与恢复重力位能.................................... 132 5.9 EGM08 与航空重力及 SRTM 改正值的比较.................................... 132 5.10 与水准测量的比较.................................................................... 139 5.11 结论................................................................................................ 144 6 讨论 145 6.1 垂直参考系统............................................................................... 145 6.2 计算概述............................................................................................... 147 6.3 空间域重力预处理....................................................................... 148 6.3.1 地形重力处理....................................................................... 149 6.3.2 重力模型验证和确认.................................................... 150 6.4 谱域重力处理.................................................................................... 152 6.5 斯托克斯积分的局部化.................................................................................... 154 6.6 未来工作.................................................................................................... 156 几何地形的重力模型.................................................................... 158 参考文献 159
3.7 计算精度................................................................................................ 87 3.7.1 连续效应.................................................................................... 87 3.8 总结.............................................................................................................. 90 4 斯托克斯积分与 FFT 91 4.1 简介................................................................................................ 91 4.2 类斯托克斯积分变换...................................................................................... 93 4.3 确定性方法............................................................................................. 95 4.4 核属性............................................................................................. 96 4.5 随机方法............................................................................................. 98 4.5.1 重力功率谱与自相关函数............................................................. 99 4.6 随机重力模型与斯托克斯积分............................................................. 104 4.6.1 环平均重力的期望值 ) ( ψ g ∆ ............ 104 4.6.2 不同的4.6.3 内核的不同部分............................................................................... 108 4.7 在有限区域上计算的大地测量内核的傅里叶变换 108 4.8 总结.............................................................................................. 113 5 地球位势垂直参考系统 114 5.1 简介......................................................................................................... 114 5.2 地球位势计算原理.................................................................................... 116 5.3 水平测量......................................................................................................... 117 5.4 新高度系统......................................................................................................... 119 5.5 为什么我们需要物理高度系统?......................................................................... 121 5.6 我们如何绘制空间中的水平表面? ................................................ 122 5.7 统一垂直参考系的标准............................................................... 124 5.7.1 潮汐系统............................................................................... 125 5.8 计算重力位能模型............................................................... 130 5.8.1 第一阶段重力场建模....................................................... 130 5.8.2 第二阶段向下延续与变换..................................................... 131 5.8.3 第三阶段向上延续与恢复重力位能.................................... 132 5.9 EGM08 与航空重力及 SRTM 改正值的比较.................................... 132 5.10 与水准测量的比较.................................................................... 139 5.11 结论................................................................................................ 144 6 讨论 145 6.1 垂直参考系统............................................................................... 145 6.2 计算概述............................................................................................... 147 6.3 空间域重力预处理....................................................................... 148 6.3.1 地形重力处理....................................................................... 149 6.3.2 重力模型验证和确认.................................................... 150 6.4 谱域重力处理.................................................................................... 152 6.5 斯托克斯积分的局部化.................................................................................... 154 6.6 未来工作.................................................................................................... 156 几何地形的重力模型.................................................................... 158 参考文献 159
胰腺导管腺癌(PDAC)预计将成为2040年(1)年的癌症死亡的第二大原因。在被诊断为局部化的患者(分别为14%和3%)中观察到的生存率明显更高,这强调了早期检测和拦截策略的需求以改善患者的结果(2)。导管内粘液性肿瘤(IPMN)是产生粘蛋白的胰腺囊肿最常见的类别,可以由主要的胰管或一个或多个分支管道引起。IPMN是PDAC的真正的前体病变,〜5-10%的非侵入性囊性病变发展为浸润性腺癌(3,4)。基于异型的程度,IPMN的衬里上皮分为低级(LG)或高级(Hg)发育异常,后者具有更大的进展倾向,即侵入性肿瘤的进展倾向(5)。此外,基于来自其他胃肠道器官的上皮细胞的形态特征和相似之处,IPMN的衬里上皮也已分为胃,肠或胰腺纤维 - 毛线亚型(6)。胃子类型是迄今为止最常见的IPMN亚型,主要是在分支管道内引起的,通常与LG发育不良有关。相比之下,肠道和胰腺珠子亚型的IPMN可以在主管或分支管道中出现,通常对应于Hg IPMN。否则,表征最常见的IPMN类别的放松调节的转录程序,即胃部亚型,主要是一个谜。继续进行辩论,肠道和胰腺细胞亚型的系统发育,一些研究表明,胃IPMN代表了这两种类别的Hg病变(7,8)的共同前体(7,8),而另一些则是胃和胰腺iPMNS的开发物具有9个不同的Intelinal Inteltient(9均与9个不同之处)。识别IPMN上皮内胃分化的驱动因素不仅会促进对这些早期囊性病变的发病机理的见解,而且还将为对HG IPMN进一步发展的分类改变提供基础,并最终伴随着癌症。
3.7 计算精度................................................................................................ 87 3.7.1 连续效应.................................................................................... 87 3.8 总结.............................................................................................................. 90 4 斯托克斯积分与 FFT 91 4.1 简介................................................................................................ 91 4.2 类斯托克斯积分变换...................................................................................... 93 4.3 确定性方法............................................................................................. 95 4.4 核属性............................................................................................. 96 4.5 随机方法............................................................................................. 98 4.5.1 重力功率谱与自相关函数............................................................. 99 4.6 随机重力模型与斯托克斯积分............................................................. 104 4.6.1 环平均重力的期望值 ) ( ψ g ∆ ............ 104 4.6.2 不同的4.6.3 内核的不同部分............................................................................... 108 4.7 在有限区域上计算的大地测量内核的傅里叶变换 108 4.8 总结.............................................................................................. 113 5 地球位势垂直参考系统 114 5.1 简介......................................................................................................... 114 5.2 地球位势计算原理.................................................................................... 116 5.3 水平测量......................................................................................................... 117 5.4 新高度系统......................................................................................................... 119 5.5 为什么我们需要物理高度系统?......................................................................... 121 5.6 我们如何绘制空间中的水平表面? ................................................ 122 5.7 统一垂直参考系的标准............................................................... 124 5.7.1 潮汐系统............................................................................... 125 5.8 计算重力位能模型............................................................... 130 5.8.1 第一阶段重力场建模....................................................... 130 5.8.2 第二阶段向下延续与变换..................................................... 131 5.8.3 第三阶段向上延续与恢复重力位能.................................... 132 5.9 EGM08 与航空重力及 SRTM 改正值的比较.................................... 132 5.10 与水准测量的比较.................................................................... 139 5.11 结论................................................................................................ 144 6 讨论 145 6.1 垂直参考系统............................................................................... 145 6.2 计算概述............................................................................................... 147 6.3 空间域重力预处理....................................................................... 148 6.3.1 地形重力处理....................................................................... 149 6.3.2 重力模型验证和确认.................................................... 150 6.4 谱域重力处理.................................................................................... 152 6.5 斯托克斯积分的局部化.................................................................................... 154 6.6 未来工作.................................................................................................... 156 几何地形的重力模型.................................................................... 158 参考文献 159
• BinHuraib, T.、Tuckute, G.、*Blauch, NM Topoformer:通过空间查询和重新加权在 Transformer 语言模型中实现类似大脑的地形组织。(2024 年)。国际学习表征会议 (ICLR),Re-Align 研讨会。*表示联合负责人和主要主管。• Vin, R.、Blauch, NM、Plaut, DC、Behrmann, M。视觉文字处理涉及分层、分布式和双边皮质网络。(2024 年)。iScience,27,108809。• Brookshire, G.、Kasper, J.、Blauch, NM、Wu, YC、Glatt, Ryan、Merrill, D.、Gerrol, S.、Yoder, KJ、Quirk, C.、Lucero, C。深度学习翻译脑电图研究中的数据泄漏。神经科学前沿。 • Ayzenberg, V.、Blauch, NM、Behrmann, M. 使用深度神经网络解决物体识别的方法 (2023)。PsyArxiv。对 TiCS 评论的反驳。• Blauch, NM Behrmann, M.、Plaut, DC 灵长类高级视觉皮层拓扑组织的连接约束计算说明 (2022)。美国国家科学院院刊,119 (3)。• Blauch, NM、Behrmann, M.、Plaut, DC 对人类陌生和熟悉面孔识别感知专业知识的计算洞察 (2021)。认知,208,104341。• Blauch, NM、Behrmann, M. Plaut, DC (2021)。熟悉和不熟悉面孔的共享感知表征的深度学习:对评论的回复。认知,208,104341。• Granovetter, M.、Burlingham, C.、Blauch, NM、Minshaw, C.、Heeger, D.、Behrmann, M. (2020) 不寻常的任务诱发瞳孔反应表明自闭症中存在不典型的蓝斑活动。神经科学杂志。• Blauch, NM、Behrmann, M. (2019)。以 3D 形式呈现面部。自然人类行为。评论。• Blauch, NM、Aminoff, E.、Tarr, MJ (2017)。功能局部化表示包含分布式信息:从深度卷积神经网络模拟中获得的见解。认知科学学会第 39 届年会论文集。
通过整合功能磁共振成像(fMRI)和脑电图(EEG)的多模式功能神经影像学(EEG)具有高时空分辨率恢复大脑活动的希望,这对于神经科学研究至关重要,这对于神经科学研究和临床诊断至关重要。然而,fMRI和脑电图活动之间的局部化的未对准可能会降低fMRI约束的脑电图源成像(ESI)技术的准确性。以数据驱动的方式利用fMRI和EEG的互补时空分辨率,我们提出了一种基于fMRI源的脑电图/fMRI融合的方法,称为fMRI源成像,基于时空范围的基础函数(fMRI-SI-SI-STBF)。fMRI-SI-STBF采用了从fMRI和EEG信号定义为经验贝叶斯框架内定义的群体和EEG信号的协方差组件(CCS)。此外,fMRI-SI-STBF代表当前源矩阵作为矩阵分解的几个未知时间基函数(TBF)的线性组合。使用变异性贝叶斯推断,基于EEG数据自动确定了fMRI信息和EEG信息的CCS以及TBFS的数字和fro孔的相对贡献。我们的结果表明,fMRI-SI-STBF可以有效利用ESI的有效fMRI信息,并且对无效的fMRI先验是可靠的。这种鲁棒性对于实际ESI至关重要,因为fMRI先验的有效性通常不清楚,因为fMRI是对神经活动的间接度量。此外,与仅使用空间约束的方法相比,fMRI-SI-STBF可以通过纳入时间结合来提高性能。对于数值模拟,fMRI-SI-STBF比现有的EEG-FMRI ESI方法(即FWMNE,fMRI-SI-SBF)和ESI方法更准确地重建源,位置和时间课程,而没有fMRI的方法(即乘火mri)(即wmne si si si si si si si si si s si i sipb)较小的空间色散(平均SD <5 mm),定位误差的距离(平均DLE <2 mm),形状误差(平均SE <0:9)和较大的模型证据值。2021由Elsevier B.V.
量子发射体(例如离子、原子、 NV 中心或量子点)与谐振器光学模式的强耦合和较长的腔光子寿命对于量子光学在基础研究和实用量子技术的众多应用中至关重要。有望满足这些要求的系统是光纤微腔 [1-4]、离子束蚀刻介质谐振器 [5] 或微组装结构 [6]。发射体和腔光子之间的强耦合可以通过很小的腔体体积和非常短的光学腔来实现。然而,对于许多现实的量子装置,由于技术困难,腔镜不能放置得太近:对于囚禁离子系统,短腔会导致介质镜带电并导致射频离子囚禁场畸变 [7];对于中性原子,由于需要将原子输送到腔内以及需要从光学侧面进入腔体进行冷却和捕获[8,9],短腔长受到限制。因此,用于量子光学装置应用的光学腔需要结合强耦合率和低损耗,同时保持镜子足够远。实现强耦合的一种方法是使腔体处于(近)同心配置中 [10]。这使腔中心的光模场腰部最小化,从而使发射极-光子耦合最大化,但是由于镜子上的模场直径较大,会增加削波损耗,从而限制了由腔协同性所能实现的最大腔性能。增加腔中心场振幅的另一种方法是通过调制镜子轮廓来创建某种干涉图案 [11]。我们假设我们不受球形腔的限制,即我们可以使用例如聚焦离子束铣削或激光烧蚀来创建任意形状的镜子,如第 6 节中更详细讨论的那样。在这里,我们用数字方式探索了腔镜的调制球面轮廓,这些轮廓会产生高度局部化的腔模式,同时保持较低的损耗。通过这种方法,我们发现了一种镜子轮廓的流形,它可以提供比同心腔更低的损耗率,从而实现更高的协同性。与我们之前的工作 [ 11 ] 相比,在这里我们不需要先验地了解我们想要生成的确切模式形状(特别是特定的
摘要:硅是一种有希望的下一代阳极,可在商业石墨阳极上增加能量密度,但日历寿命仍然有问题。在这项工作中,使用扫描电化学显微镜来跟踪硅薄膜表面随时间表面的位点特异性反应性,以确定在形成的固体电解质相位相(SEI)(SEI)是否发生了不良的法拉达反应(SEI),在日历中,在四个情况下,在四个情况下,在1.5 v和100 mV之间的形式和1.1的形成(1)。 V和100 mV,随后的休息从(3)0.75 V和(4)100 mV开始。在所有情况下,硅的电钝化在3天的时间内随时间和潜力的增加而降低。随着钝化的减少,在500μm2面积上钝化的均匀性随时间降低。尽管反应性有一些局部“热点”,但钝化的面积均匀性表明全局SEI失败(例如,SEI溶解),而不是局部化(例如,破裂)失败。The silicon delithiated to 1.5 V vs Li/Li + was less passivated than the lithiated silicon (at the beginning of rest, the forward rate constants, k f , for ferrocene redox were 7.19 × 10 − 5 and 3.17 × 10 − 7 m/s, respectively) and was also found to be more reactive than the pristine silicon surface ( k f of 5 × 10 − 5 m/s).这种反应性可能是SEI氧化的结果。仅将细胞与li/li +截然不同时,表面仍在钝化(k f为6.11×10-6 m/s),但仍然比岩性表面(k f的3.03×10-9 m/s)少。这表明阳极的电势应保持在或低于〜0.75 v vs li/li +以防止SEI钝化。此信息将有助于调整电压窗口,以进行SI Half Half细胞和SI完整单元的操作电压以优化日历寿命。所提供的结果应鼓励研究界在日历老化期间研究化学而不是机械的故障模式,并停止使用1.5 V的典型惯例作为半细胞中循环SI的截止潜力。关键字:日历老化,硅,电池,SECM,钝化,SEI■简介
David W. Pierce, Stefan Rahimi, Daniel R. Cayan, Julie Kalansky, Scripps Institution of Oceanography, UCSD & UCLA CEC-funded agreement: EPC-20-006 Development of Climate Projections for California and Identification of General Use Projections December 2023 Methods and Prior Relevant Work Global climate models use millions of calculations and estimations to represent interactions in the earth system.This information and data are extremely useful for understanding the climate system and predicting its future change.However, all models have errors.Systematic model errors are called biases.Examples of climate model biases include overly wet winters or heat waves that are not as extreme as observed.The process of reducing model biases is called bias correction .There are many different kinds of model biases and numerous bias correction methods.因此,由于使用了具有不同目标和结果的不同方法,因此对气候方案数据的用户的描述可能会使用户混淆。通过天气研究和预测(WRF)模型以及在统计缩减局部化的局部构造的模拟版本2(以下内容)中描述了通过天气研究和预测模型(WRF)模型使用的偏差校正方法的具体细节。1本备忘录的目的是对偏差校正进行高级概述,以便气候数据用户可以更好地了解不同产品中偏见校正的使用方式不同。Biases tend to be complicated functions of time of year and how extreme the value is.例如,由于描绘雪过程的模型错误,冬季的温度偏见可能与夏季不同,或者由于大气河流的模拟方式,“平均”潮湿天的降水偏见可能不同于“平均”潮湿天数。因此,偏差校正方法通常是按月或季节应用的,有时会考虑随着值变得更加极端的变化而考虑如何变化(例如Panofsky和Brier,1968; Thrasher等,2012)。LOCA2和WRF产品都始于全球各个团体产生的全球气候模型(GCM)预测。GCM通常具有较大的偏见。例如,模拟冬季降水的GCM是加利福尼亚观察到的两倍。LOCA2运行使用Presrat对GCM值进行偏差校正(Pierce等人2015)在降尺度步骤之前的方法。presrat计算偏差校正
提供用户定义的力学、信号呈现和生物分子释放控制。利用光介导化学来调节材料特性,使研究人员能够在时间和空间上调整和控制化学反应。[25] 依靠生理条件来触发材料反应可能具有挑战性,因为局部酶浓度、pH 值甚至还原环境在活体样本和患者中可能存在很大差异。[26,27] 利用外部触发器可以帮助标准化研究和临床结果,将启动材料改变的权力交到患者或提供者手中。在此类事件的其他可能的外部触发器中(例如超声波、磁场或电场以及外源性施用的小分子),光是独一无二的,因为它可以提供高度局部化的材料响应,能够准确调整材料变化的程度,并有可能使用不同的波长调节不同的物理化学性质。虽然光响应生物材料在实验室中引起了轰动,但它们的适用范围很少超出体外细胞培养。常用化学物质与组织不透明度相结合所带来的根本限制使得体内应用基本上不可能。材料中最常用的光响应分子对近紫外线 (near-UV) 和蓝光反应最佳,这两种光对组织的穿透性都最小。[28] 虽然一些用这些光响应基团修饰的生物材料已在体内使用,但它们的激活仅限于皮肤下方的移植位置。[29] 将这些方法扩展到体内环境需要使用能够深入复杂组织的低能量、长波长光。扩大体内调节可能性的愿望导致了对此类光响应分子的激活波长进行红移的重大推动。这些化学进展,加上光学技术的发展,可在体内局部管理光,为在活体环境中光控制材料提供了新的和令人兴奋的机会。鉴于最近的几份报告详细介绍了对紫外线和蓝光敏感的物种及其材料科学应用,[1,30,31] 在这里我们重点介绍一些系统,这些系统的光激活可以通过接近哺乳动物组织光学窗口的低能光来控制。为了本综述的目的,我们将讨论仅限于光活性小分子和蛋白质,它们的单光子激发波长位于可见光和近红外 (near-IR) 区域,可用于通过光调节体内生物材料的特性。