摘要 — 皮层内脑机接口 (iBCI) 为瘫痪患者提供了一种通过从大脑活动解码的信号来控制设备的方法。尽管这些设备最近取得了令人瞩目的进展,但它们的控制水平仍然无法达到健全人的水平。为了实现自然控制并提高神经假体的性能,iBCI 可能需要包含本体感受反馈。为了通过机械触觉刺激提供本体感受反馈,我们旨在了解触觉刺激如何影响运动皮层神经元并最终影响 iBCI 控制。我们为四肢瘫痪患者的后颈提供了皮肤剪切触觉刺激来替代本体感受。通过使用单丝测试套件评估触觉灵敏度来确定颈部位置。参与者能够以 65% 的准确率正确报告 8 个不同方向的后颈皮肤剪切。我们发现运动皮层单元对剪切刺激表现出感觉反应,其中一些单元对刺激有强烈的响应,并可以通过余弦形函数很好地建模。我们还演示了在线 iBCI 光标控制,该控制由解码的命令信号驱动,并带有连续的皮肤剪切反馈。与纯视觉反馈条件相比,当参与者获得触觉反馈时,光标控制性能略有提高,但效果显著。
无干扰 主要任务在没有任何次要干扰的情况下完成。 背景噪音 受试者收听带有餐厅背景噪音的音轨,音量恒定。 计数音调 以可变的时间间隔随机向受试者呈现低、中、高频音调的哔哔声。指示受试者在整个试验过程中增加高哔哔声的次数,减去低哔哔声的次数,并大声计数值。 以三为单位倒数 研究人员生成一个随机的三位数,指示受试者从生成的数字开始大声以三为单位倒数。 随意交谈 向受试者提问(从不重复)以模仿正常对话。示例问题包括: 你的周末过得怎么样? 你昨天看了电影吗? 运动任务受试者 P1,轮椅操作:受试者的电动轮椅在试验期间关闭。受试者每 10 秒收到一次听觉提示,以改变她施加在下巴操纵杆上的力的方向。她在整个试验过程中都施加了力。方向从随机的起始方向(上、下、左、右)顺时针移动。
随着微纳米制造技术的发展,用于大脑皮层内神经调节的神经探针也得到了发展。这些用于皮层内刺激的技术大多依赖于通过电极或电极阵列进行的直接电刺激。利用时变磁场产生电场是一种较新的神经调节技术,已被证明对皮层内刺激更为有效。此外,电流驱动线圈不需要与组织进行导电接触,并能够精确调整磁场,不受生物组织和封装层非磁性的影响。可以根据操作所需的参数优化和定制此类微线圈制造的材料和设计参数空间,以提供理想的性能。在这项工作中,我们回顾了可植入微线圈的关键要求,包括探针结构和材料特性,并讨论了它们在皮层内神经调节应用中的特性和相关挑战。© 2021 作者。除非另有说明,本文的所有内容均根据知识共享署名 (CC BY) 许可证进行授权 (http://creativecommons.org/licenses/by/4.0/)。https://doi.org/10.1063/5.0023486
摘要:背景:由于皮层内脑机接口中神经记录的非平稳性,需要每天以监督的方式进行再训练以保持解码器的性能。使用基于强化学习(RL)的自校准解码器可以改善此问题。然而,在保持良好性能的同时快速探索新知识仍然是基于RL的解码器的挑战。方法:为了解决这个问题,我们提出了一种基于注意力门控RL的算法,该算法结合了迁移学习、小批量和权重更新方案来加速权重更新并避免过度拟合。所提出的算法在两只猴子的皮层内神经数据上进行了测试,以解码它们的伸手位置和抓握姿势。结果:解码结果表明,与未再训练的分类器相比,我们提出的算法的分类准确率提高了约20%,甚至比每日再训练的分类器取得了更好的分类准确率。此外,与传统的RL方法相比,我们的算法将准确率提高了约10%,在线权重更新速度提高了约70倍。结论:本文提出了一种自校准解码器,该解码器具有良好且稳健的解码性能,权重更新速度快,可能有助于其在可穿戴设备和临床实践中的应用。
摘要 — 皮层内脑机接口 (iBCI) 为瘫痪患者提供了一种通过从大脑活动解码的信号来控制设备的方法。尽管这些设备最近取得了令人瞩目的进展,但它们的控制水平仍然无法达到健全人的水平。为了实现自然控制并提高神经假体的性能,iBCI 可能需要包含本体感受反馈。为了通过机械触觉刺激提供本体感受反馈,我们旨在了解触觉刺激如何影响运动皮层神经元并最终影响 iBCI 控制。我们为四肢瘫痪患者的后颈提供了皮肤剪切触觉刺激来替代本体感受。通过使用单丝测试套件评估触觉灵敏度来确定颈部位置。参与者能够以 65% 的准确率正确报告 8 个不同方向的后颈皮肤剪切。我们发现运动皮层单元对剪切刺激表现出感觉反应,其中一些单元对刺激有强烈的响应,并可以通过余弦形函数很好地建模。我们还演示了在线 iBCI 光标控制,该控制由解码的命令信号驱动,并带有连续的皮肤剪切反馈。与纯视觉反馈条件相比,当参与者获得触觉反馈时,光标控制性能略有提高,但效果显著。
图 1:皮层内基于听觉拼写器的通信 – A) 在患者家中设置。信号由植入运动皮层的微电极阵列记录,并使用定制的 BCI 软件进行处理。B) 听觉神经反馈和拼写器的示意图。检测到动作电位并用于估计神经放电率。选择一个或多个通道,它们的放电率标准化和混合(参见在线方法)。字母组和字母等选项由合成语音呈现,然后是一段响应期,在此期间,要求患者调节标准化和混合的放电率,以获得正响应,降低以获得负响应。标准化速率线性映射到响应期间播放的短音的频率,以向患者提供反馈。患者必须将放电率保持在某个阈值以上(以下)通常 500 毫秒,以引起“是”(“否”)响应。在神经反馈模块中训练神经放电率的控制,其中指示患者匹配目标音调的频率。
图 1:皮层内基于听觉拼写器的通信 – A) 在患者家中设置。信号由植入运动皮层的微电极阵列记录,并使用定制的 BCI 软件进行处理。B) 听觉神经反馈和拼写器的示意图。检测到动作电位并用于估计神经放电率。选择一个或多个通道,它们的放电率标准化和混合(参见在线方法)。字母组和字母等选项由合成语音呈现,然后是一段响应期,在此期间,要求患者调节标准化和混合的放电率,以获得正响应,降低以获得负响应。标准化速率线性映射到响应期间播放的短音的频率,以向患者提供反馈。患者必须将放电率保持在某个阈值以上(以下)通常 500 毫秒,以引起“是”(“否”)响应。在神经反馈模块中训练神经放电率的控制,其中指示患者匹配目标音调的频率。
对于感觉运动功能障碍患者来说,恢复手指和指尖的皮肤感觉对于实现灵巧的假肢控制至关重要。然而,通过人类皮层内微刺激 (ICMS) 实现局部和可重现的指尖感觉尚未见报道。本文表明,人类参与者的 ICMS 能够引发双手 7 个手指的感知,包括 6 个指尖区域(即每只手 3 个)。中位感知大小估计包括 1.40 个手指或手掌节段(例如,一个节段是指尖或手指下方的上手掌部分)。这通过更敏感的手动标记技术得到证实,其中中位感知大小对应于指尖节段的大约 120%。感知表现出高度的日内一致性,包括在盲手指辨别任务中的高性能 (99%)。几天内,感知的变化更大,75.8% 的试验包含受刺激电极的模态手指或手掌区域。这些结果表明,ICMS 可以在神经假体操纵物体期间传递局部指尖感觉。
使用小鼠和大鼠模型进行神经接口领域已经取得了进展,但这些模型的可互换性的标准化尚未建立。小鼠模型允许使用转基因、光遗传学和先进的成像方式,可用于检查与神经植入物本身相关的生物影响和故障机制。直接比较小鼠和大鼠模型之间的电生理数据的能力对于神经接口的开发和评估至关重要。这两种啮齿动物模型中最明显的区别是尺寸,这引起了人们对设备引起的组织应变作用的担忧。植入的微电极阵列对脑组织施加的应变被认为会影响长期记录性能。因此,了解植入物与组织尺寸比差异引起的组织应变的任何潜在差异对于验证大鼠和小鼠模型的可互换性至关重要。因此,本研究旨在调查电生理差异和预测设备引起的组织应变。从植入动物身上收集了 8 周的大鼠和小鼠电生理记录。使用有限元模型评估植入皮层内微电极的组织应变,同时考虑到两种模型在皮层深度、植入深度和电极几何形状方面的差异。与小鼠模型相比,大鼠模型在急性而非慢性时间点记录单个单元活动的通道百分比和每个通道记录的单元数量更大。此外,有限元模型还显示两种啮齿动物模型之间在组织应变方面没有预测差异。总的来说