Merdan OZKAHRAMAN*、Haydar LIVATYALI 摘要:使用机器人机械手的生产系统在过去几十年中变得很普遍,而且趋势是朝着节省空间的无围栏单元发展。因此,这些系统的安全性和灵活性变得更加关键。安全系统基于传感器数据或摄像机图像。虽然基于摄像头的系统的灵活性更好,但传统的图像处理方法对工作环境很敏感。人工智能可能是他们快速适应变化需求并提高准确性和稳定性的有力工具。在本研究中,设计了一种低成本的基于 2-D 摄像头的安全系统,并将其安装在实验性的无围栏机器人工作单元中。系统控制器与三种替代深度学习(ResNet-152、AlexNet、SqueezeNet)和三种机器学习模块(支持向量机、随机森林和决策树)相结合。这些模块使用十个不同异物穿透警报区的照片图像进行训练。为了涵盖不断变化的工业环境条件,我们通过使用每个类别最多 550 张图像来涵盖相机振动、阴影、反射、照度变化等破坏性影响。使用用于训练和测试这六个系统的受限数据,SqueezeNet 深度学习模型的最佳准确率为 95%,且没有过度拟合。尽管如此,基于机器学习的模型的预测时间比基于深度学习的模型快 100 倍。因此,安全系统可以快速适应任何可能的变化,并防止工作条件可能产生的噪音,并可以防止工业生产中可能发生的时间损失。 关键词:人工智能;图像分类;机器人与自动化 1 引言 几十年来,机器人技术一直用于工业生产和许多其他领域。各种产品的生产需求变化要求生产线和机器人单元频繁变化。生产线的变化会导致时间和劳动力的损失 [1]。这些损失的一个重要部分来自生产线中工作单元的安全要求。工业中不仅使用围栏,还使用基于传感器和摄像头的安全系统。基于摄像头的安全系统可以被认为是最先进的技术。在这种系统中,由于工作单元的变化,必须重新调整结构。可重构结构中使用的安全系统、基于人机互操作性的系统以及无围栏系统的图像处理也应适应这种灵活性 [2-4]。为了实现安全系统对工作灵活性的适应性,并避免环境条件引起的噪音,在传统的图像处理方法中加入人工智能算法是不可避免的。当目标是识别和区分进入工作单元的异物时,使用基于人工智能的图像处理的系统可能会提高安全系统的性能。传统的基于图像处理的安全系统无法可靠地识别友好物体。这些友好物体可能是工件或允许进入单元区域内的操作员。传统系统需要一些额外的设备来识别这些物体而不停止机器人手臂的工作。基于人工智能的安全系统在这方面更为成功。系统的可靠性将随着系统以期望和不期望的方式识别物体而提高。然而,众所周知,传统系统会受到工作环境中的振动、阴影和照度等噪声源的影响。可以建立一个能够快速响应未来变化并提高可靠性的安全系统。通过
底层技术可能带来更高的效率,但也会增加更多复杂性和维护(取决于机器人所取代的系统或技术),这就是工业机器人系统。它们在许多制造环境中得到越来越广泛的应用,包括制造汽车、飞机和消费电子产品的制造环境(DeVlieg,2010)(Kahan、Bukchin、Menassa 和 Ben-Gal,2009)(Kusuda,1999)(Zwicker 和 Reinhart,2014)。维护实践对于保持工业机器人系统以必要的效率和准确性运行至关重要,以实现制造过程的生产力和质量目标。根据 ISO 标准 8373(国际标准化组织,2012 年)中规定的定义,这项工作将机器人定义为工业机器人,将机器人系统定义为工业机器人系统。这些定义是: