芒果 ( Mangifera indica L.) 是全球种植和贸易最广泛的水果作物之一。芒果可以抵御季节性干旱期,尤其是在开花期间。然而,长期干旱胁迫会导致植物衰弱,并可能导致由非生物和生物因素引起的伤害和疾病。随着芒果基因组的公开,现在可以广泛开展与芒果干旱适应相关的基因组研究。在本研究中,使用“Alphonso”和“Tommy Atkins”品种(分别为 PRJNA487154 和 PRJNA450143)的全基因组序列 (WGS) 分析了芒果的全基因组干旱相关基因 (DRG)。使用 BLASTP,在“Alphonso”和“Tommy Atkins”的基因组中分别鉴定出 261 个和 257 个 DRG。这些基因中约 50% 与芒果对干旱的分子和生理适应有关。在干旱胁迫基因中,ABC 转运蛋白基因 ABCG40 在芒果中的同源物数量最多,其次是钙依赖性蛋白激酶基因 ZmCPK4 、 CPK21 和 CDPK7 ,以及质膜质子 ATPase OST2 。 DRG 的基因本体论 (GO) 分析表明,蛋白质结合、ATP 结合和 mRNA 结合是最常见的分子功能,而这些 DRG 的主要生物学过程与其对水分匮乏的反应有关。系统发育分析表明,“Alphonso”和“Tommy Atkins”中与干旱相关的蛋白质分别大致聚类为 7 个和 6 个主要分支。这项研究迄今为止提供了有关芒果全基因组 DRG 的最全面信息,可加强芒果和其他相关果树抗旱的标记辅助育种计划,以及未来结合有利等位基因来改善这种菲律宾重要水果作物的整体农艺特性。
• 全球亚热带和温带地区干旱期的频率和长度正在增加。表观遗传对水分胁迫的反应可能是植物抵御这些难以预测的挑战的关键。实验性 DNA 去甲基化与应激因子的应用相结合是揭示表观遗传学对植物应激反应贡献的适当策略。• 在温室中,我们分析了用 5-氮杂胞苷对种子进行去甲基化和/或反复受水胁迫后,一年生地中海草本植物 Erodium cicutarium 成年植株叶片胞嘧啶甲基化的变化。我们使用亚硫酸盐 RADseq (BsRADseq) 和新报道的 E. cicutarium 参考基因组,以 2 9 2 因子设计表征甲基化变化,控制植物相关性。 • 从长期来看,仅用 5-氮杂胞苷处理会导致单个胞嘧啶的低甲基化和高甲基化,在 CG 环境中会出现显著的低甲基化。在对照条件下,干旱导致除 CHH 环境中所有环境中的甲基化减少。相反,经历反复水胁迫并用 5-氮杂胞苷处理的植物的基因组使 DNA 甲基化水平增加约 5%。• 种子去甲基化和反复干旱在整体和特定环境中的胞嘧啶甲基化方面产生了高度显著的相互作用。大多数甲基化变化发生在基因区域周围和转座因子内。这些与基因相关的差异甲基化区域的注释包括几个在应激反应中具有潜在作用的基因(例如 PAL、CDKC 和 ABCF),证实了表观遗传在分子水平上应对应激的贡献。
土壤微生物接种剂越来越多地被探索,以改善土壤条件以促进生态修复。在西澳大利亚州西南部,高度生物多样性的河岸林地植物社区越来越受到各种因素的威胁,包括气候变化,土地开发和采矿。Banksia Woodland修复是为该植物社区服务的必要条件。尚未调查在河岸林地修复中使用微生物接种。在这里,我们评估了商业微生物接种剂(Gogo Juice,Neutrog Australia Pty Ltd)的功效,以提高10种生态多样的河岸林地植物物种的性能。植物与微生物接种处理(无接种和接种)结合使用了两个浇水方案之一(含水良好和干旱)。在这两种浇水治疗中维持植物10周,在这一点上,所有处理中的植物均经历了持续8周的最终干旱期。通过植物生物量和分配,气体交换参数,叶面碳和氮以及稳定的同位素(δ15n和δ13c)组成评估植物性能。植物木质部植物素氨基甲素,以研究微生物接种对植物植物激素谱的影响以及与其他观察到的生理参数的潜在关系。在所有研究的植物物种中,接种处理对植物生长的影响很小。这表明所选的商业微生物接种剂对经测试的植物物种的好处有限。在每个物种中的进一步分析表明,接种处理并未导致在含水良好或干旱的压力条件下显着的生物量增益,并且对氮营养和光合作用的影响是可变的,并且很小。进一步研究微生物(存在于接种剂中)和植物之间的兼容性,接种时机,在受控条件下实现有效性所需的微生物和浓度的生存能力,以及在实际恢复环境中测试可行性和功效所需的实质性试验。
1. 挑战背景 气候变化是我们这个时代最紧迫的危机之一,对全球生命、基础设施、经济和生态系统的威胁日益增加。气候变化不再是一个遥远的问题;它的影响现在正在显现,如果排放继续有增无减,预计还会加剧。其后果对今天的人们来说是严重而不可逆转的,冰川和冰盖迅速缩小,海平面上升,更强烈的热浪已经出现。科学家预测还会有更深远的影响,例如野火发生的频率和强度增加、干旱期延长以及热带气旋增强。到 2100 年,海平面可能上升 6.5 英尺 1 ,迫使沿海社区流离失所,破坏生态系统。在美国,影响因地区而异——西部野火燃烧面积增加了一倍,海平面上升威胁着东南部的基础设施。创新的数据驱动解决方案对于减轻这些日益增长的风险至关重要。从太空的独特视角,NASA 收集了对我们不断变化的地球的重要长期观测数据。NASA 通过卫星、雷达和船舶以及模型输出生成大量地球系统科学数据,为创新思想家利用这些来源提供了大量机会。可持续商业模式挑战赛旨在识别和培育围绕 NASA 地球系统科学数据建立的可持续商业模式。该挑战赛邀请企业家、研究人员、初创企业和创新者使用 NASA 公开的气候和地球系统数据源来创建可持续的商业模式以应对气候挑战。NASA 致力于扩大其招标活动的参与范围并促进技术进步,特别是在与气候变化相关的应用方面。可持续商业模式挑战赛旨在吸引能够利用 NASA 地球系统科学数据或模型建立可持续企业的多元化创新者。主要目标是促进创建应对紧迫气候挑战并促进长期可扩展解决方案的商业模式。通过吸引新的企业家并促进创新,该挑战赛还成为美国宇航局 SBIR(小型企业创新研究)计划的途径,有助于扩大能够真正对全球应对气候变化产生影响的解决方案。
全球气候变化对陆地生态系统功能影响巨大,降水模式的波动范围从极端干旱到不适应这些条件的生态系统中的高强度降雨事件。同时,生态系统功能受到生物多样性迅速丧失的威胁(Tilman 等人,2012 年)。气候变化和生物多样性对生态系统功能产生复合影响的可能性凸显了同时考虑这两个因素的必要性。通过更好地了解生物多样性和气候变化对生态系统过程的潜在机制介质,可以更好地预测此类影响。大量研究表明土壤微生物在生态系统功能( Austin 等人, 2014 ; Dubey 等人, 2019 ; Podzikowski 等人, 2024 )和生物多样性维持( Van Der Heijden 等人, 2008 ; Bever 等人, 2015 )中发挥着关键作用,因此很可能成为调节生物多样性和气候变化对生态系统功能的联合影响的候选者。因此,了解土壤微生物组(包括功能不同的微生物群)如何应对气候扰动以及植物多样性和组成的变化至关重要。土壤微生物组已被证明对降水变化高度敏感( Barnard 等人, 2013 ; Engelhardt 等人, 2018 )。研究表明,细菌和真菌(包括真菌病原体(Coulhoun,1973 年;Talley 等人,2002 年;Delavaux 等人,2021 年 a)和丛枝菌根 (AM) 真菌(House and Bever,2018 年)和卵菌(Van West 等人,2003 年;Delavaux 等人,2021 年 a))的丰富度、丰度和组成会随着降水量的变化而变化。虽然细菌和真菌都对降水量的增加作出反应,但研究发现真菌比细菌更能耐受干旱条件(Barnard 等人,2013 年;Engelhardt 等人,2018 年)。同时,一些真菌病原体(例如锈病,Froelich 和 Snow,1986;根腐病 Wyka 等人,2018;Bevacqua 等人,2023)和腐生菌(Delavaux 等人,2021a)被发现在较潮湿的条件下繁殖。此外,陆生卵菌通常是植物病原体,它们在较潮湿的条件下多样性增加(Delavaux 等人,2021a),这可能是它们依赖水的生命周期所预期的(Thines,2018)。因此,这些对降水的不同反应对于微生物组对植物群落的反馈具有重大影响,例如在干旱条件下对 AM 真菌伙伴的依赖增加( Stahl 和 Smith,1984 ; Schultz 等人,2001 ; Auge,2001 ; Marulanda 等人,2003 )以及在潮湿条件下病原体的影响可能更大。因此,确定功能和分类学上不同的土壤微生物群对重大降水变化的相对敏感性,对于理解微生物组驱动的功能如何随着干旱期延长和降雨期加剧而发生变化至关重要。迄今为止,还没有研究测量过微生物功能群对降水实验性改变的广度。土壤微生物组对植物群落组成也高度敏感。植物物种丰富度的提高可以增加微生物多样性(Lamb 等人,2011 年;Burrill 等人,2023 年),因为植物物种的微生物组通常因根系结构(Saleem 等人,2018 年)、根系