在这项研究中,检查了构建方向对聚乳酸或PLA聚合物拉伸强度的影响。利用直径为1.70mm的PLA丝,根据塑料的ASTM D638规格,使用SolidWorks软件设计拉伸测试样品。然后,样品以45度的方向打印3D,使用FDL 3D打印机直立。最终的样品使用痛风通用测试机进行了应力测试,发现平坦的方向样品由于整个层上更有效的负载分布而导致的紧张应力最大。另一方面,垂直印刷的样品显示出最小的拉伸应力,表明有效的负载传输较低。光学显微镜用于观察材料的打印层方向。
在某些假设下,已有几类量子电路被证明具有量子计算优势。研究具有量子优势的更受限的量子电路类,其动机是实验演示中可能简化。在本文中,我们研究了基于测量的量子计算的效率,测量时间顺序完全平坦。我们提出了用于任意布尔函数确定性计算的新构造,利用多量子比特 Greenberger、Horne 和 Zeilinger (GHZ) 状态中的相关性。我们使用 Clifford 层次结构来表征必要的测量复杂度,并且与以前的构造相比,通常减少所需的量子比特数。特别是,我们确定了一个布尔函数系列,可以使用非自适应 MBQC 对其进行确定性评估,与经典电路相比,它在宽度和门数方面具有量子优势。
在从熔体中冷却时,pa(PU)经历了一系列结构性变速箱,伴随着在低温下从其휹相到휶相的体积降低了约28%。已知PU的部分填充5 f-电子壳涉及,但它们在转换中的确切作用仍不清楚。通过在휶-PU和凝胶稳定的휹 -PU上使用量热法测量,结合了共振剂超声和X射线散射数据,以说明晶格对晶格的异常软化,我们在这里显示,在这里,在Phonon Entropy差异上,电子熵的差异是电子熵之间的差异。而不是发现휶 -pu中宽F-电子带的电子特定热特征,正如预期在近kondo折叠相中可能与静脉相比,我们发现它表明其表明较高的子带。因此,提出了PU的5 F电子在其较大的单位细胞形成中扮演的重要作用,该相位包含不等晶格位点和键长的长度。
手性精确的频带(FBS)处于电荷中立性引起了人们的极大兴趣,提出了一种有趣的凝结物系统,以实现异国情调的多体现象,正如魔术角扭曲的双层石墨烯中特定的,用于超导性和基于三烯测量的超级素质性素质素质的超级吸光素,以实现Ececiton insecitons for EcciteNemation。然而,还没有开发出这种FB的通用物理模型。Here we present a mathematical theorem called bipartite double cover (BDC) theorem and prove that the BDC of line-graph (LG) lattices hosts at least two chiral exact flat bands of opposite chirality, i.e., yin-yang FBs, centered-around/at charge neutrality ( E = 0) akin to the chiral limit of twisted bilayer graphene.我们通过将其精确映射到六角形晶格的BDC的紧密结合晶格模型中来说明该定理,以分别用于强拓扑和三角形晶格的脆弱拓扑FBS。此外,我们使用轨道设计原理在非BDC晶格中实现这种异国风味的阳fb,以促进其真实的物质发现。本文不仅可以在Moiré异质结构以外的零能量上搜索精确的手性FB,而且还可以为发现具有FB启用的量子半导体而打开大门。
Nominal Capacity 350 mAh to 2.5 V cutoff at 25°C (77°F) at 350 hour rate Volume 1.60 cc (0.098in 3 ) Operating Temperature -40 to 95°C (-40 to 203°F) Cell Shape Prismatic Case Material Stainless steel 304L Positive Terminals* Nickel plated stainless steel 446 Negative Terminal* Nickel alloy 52 Case Polarity Negative
摘要 - 为了主动浏览和遍历各种特征,主动使用视觉感知是必不可少的。我们旨在调查使用稀疏视觉观测值的可行性和性能,以在以人为中心的环境中在一系列常见的地形(步骤,坡道,间隙和楼梯)上实现感知运动。我们制定了适合在感兴趣地形上运动的稀疏视觉输入的选择,并提出了一个学习框架,以整合外部感受和本体感受状态。我们专门设计了状态观察和培训课程,以在各种不同的地形上有效地学习反馈控制政策。我们在各种任务中广泛验证和基准了学到的政策:在地面上行走的全向行走,并在各种障碍物上向前移动,显示出高成功的遍历率。此外,我们通过在新的看不见的地形上增加各种水平的噪声和测试来研究外观感受性消融并评估政策概括。我们证明了自主感知运动的能力,只能使用直接深度测量中的稀疏视觉观测来实现,这些观察值易于从激光雷达或RGB-D传感器中易于获得,在20厘米高度的高高高度上显示出强大的上升和下降,即20 cm的高度,即50%的腿长和强劲的腿部和稳健的噪声和Unigeseen anderseenseles anderseens anderseens anderseen anderseenseles anderseen anderseen sereen seleseen anderains ternales anderains。
摘要:通过使用基于平局的控制方法来解决机器人操纵器和自动驾驶汽车的多变量和非线性动力学的控制问题,该方法在连续循环中实现。这些机器人系统的状态空间模型分为两个子系统,它们之间在级联回路中连接。这些子系统中的每个子系统都可以独立看作是一个差异的系统,并且可以通过其动力学反转来执行其控制,就像输入输出输出线性化频率的情况下一样。第二个子系统的状态变量成为第一个子系统的虚拟控制输入。又将外源控制输入应用于第一个子系统。整个控制方法是在两个连续的循环中实现的,并且通过Lyapunov稳定性分析也证明了其全球稳定性属性。在两个案例研究中确定了控制方法的有效性:(a)控制3-DOF工业刚性链接机器人操纵器,(ii)控制3-DOF自主水下容器。
化学机械平坦化 (CMP) 工艺已广泛用于平坦化硅基半导体器件中的各种材料,包括电介质、金属和半导体。它是实现纳米级晶圆和芯片级平坦度的最关键步骤之一。然而,在 CMP 工艺之后,晶圆表面上会观察到各种污染物,并且由于它们对器件性能和可靠性具有最直接的影响,因此它们成为许多代快速减小的特征尺寸中最关键的良率降低因素。本书章节提供了 (1) CMP 耗材引起的污染物,例如残留颗粒、表面残留物、有机残留物、焊盘碎片和金属杂质、焊盘污染、水印等,(2) CMP 后清洁过程中刷子引起的交叉污染,(3) 去除这些污染物的 CMP 后清洁。对各种类型的 CMP 污染物的形成及其特性的基本了解将极大地有利于下一代 CMP 浆料和 CMP 后清洁解决方案的开发。
用于汽车和航空航天工程中使用的食品,药品和电子包装以及金属聚合物接头,在界面上的水分吸附在长期的关节性能中起着重要作用。[3,4]这是因为固定的层状结构有助于显着降低小分子的扩散速率,例如氧气和水分,由于其独特的结构,具有紧密堆积的聚合物链,并具有垂直于底物的紧密堆积的聚合物链。目前将固定层状结构结构的形成理解为受到封闭的结晶的结果。[5]已经报道了两种类型的封闭结晶。在发生微相聚合物或聚合物混合物中发生微相聚合物时发现了第一种类型。当每个组分的结晶温度(T C)不同时,具有较高T C的组分首先结晶并形成其他聚合物的纳米或微观限制。因此,较低T C的分量在限制下结晶。[6]在超薄膜中发现了第二种粘附的结晶,来自稀聚合物溶液或聚合物熔体。[7]在各种晶体聚体中发现了这种层状晶体结构,例如聚(乙烯基氟化物),聚乙烷氧化物),聚(3-羟基丁酸)和聚(L-乳酸)。在我们的上一篇论文中,关于聚合物间相结构对半石化热塑性和金属之间粘附的影响,我们表明可以在聚合物 - 金属中的相互之间找到层状结构。[8]尽管形成这些层状Crys-talline结构的CRYS级数机制,例如,关于生长取向的结构,仍然不太了解,但纳米级限制(含量很少的纳米量)被认为是这些层状结构结构的关键。[9]层状结构的形成对金属心皮界面的断裂行为有重大影响,这在例如从模具表面释放热塑性塑料至关重要。这些结果表明,层状结构可能形成,而无需上述纳米级。在本文中,进一步研究了聚合物中的层状结构,以进行各种半晶体热塑料和不同的底物材料。还使用硅
•高孔隙率和低电阻 - 低电阻可以确定明确定义的孔径,从而使易于移动到电解质,但同时降低了活性材料的脱落到可忽略的量•良好的机械耐药性和弹性 - 手套在其周期性扩张过程中均可产生活性材料。织物将糊状物压在导电铅刺上,以确保性能稳定。在细胞组装过程中对磨损的机械耐药性减少了碎屑和污染•降低了锑的释放速度 - 织物使棘突周围的活性材料保持充当电解质的过滤器,从而降低了从正网格中的抗量释放速度。相比之下,对于粘贴板,网格电线和电解质之间几乎没有距离•半刚性的稳定性 - 半刚性的编织织物使多管袋具有稳定的形状,可以轻松且快速的填充过程,并通过糊状,粉末或浆液的固定剂•高度固定的剂量•与两种耐药的固定剂一起使用,以使两种较高的固定剂均可用来,以使两种较高的固定剂与der一起使用,以使两种耐用的固定能够供应。短路阻力。,ISM解决方案(外部管具有一半的织物完全关闭),可以最好地保护正板和负板之间的短电路,而电阻仅略有增加