1)WHO肿瘤分类. 中枢神经系统肿瘤,第五版,第6卷。WHO肿瘤分类编辑委员会。里昂:国际癌症研究机构;2021。2)Capper D, Jones DTW, Sill M, Hovestadt V, Schrimpf D, Sturm D, et al. DNA甲基化为基础的中枢神经系统肿瘤分类。Nature 2018; 555: 469–74。3)Satomi K, Saito K, Shimoyamada H, Onizuka H, Shibayama T et al. The role of nonlinear dimension reduction of gene-wide DNA methylome in integration diagnostic: A case study of glioblastoma, IDH-wildtype. Pathol Int. 2023; 73: 523-6。 4)Shibayama T, Satomi K, Tanaka R, Yoshida A, Nagahama K, Hayashi A 等. 肺部炎性平滑肌肉瘤是DNA甲基化为基础的肉瘤分类的潜在诊断缺陷:一例病例报告. BMC Pulm Med. 2023; 23: 324.
发现:细胞系研究表明,米非司酮可以下调多种白血病细胞系的 PIBF 生成,并抑制癌细胞系的增殖,例如卵巢癌和 IV 期多形性胶质母细胞瘤。对照小鼠研究发现,口服管饲米非司酮后,包括白血病、肺癌、睾丸癌和前列腺癌在内的患者寿命和生活质量有所提高,这是通过身体调节评分监测的。最重要的是,据传闻,米非司酮可延长大多数晚期癌症患者的生命并改善生活质量,这些患者不再对任何可用的抗癌药物产生反应。这些癌症包括结肠癌、肾癌、小细胞癌和非小细胞肺癌、胰腺癌、胸腺上皮细胞癌、肾盂移行细胞癌、IV 级多形性胶质母细胞瘤、纤维成骨肉瘤和平滑肌肉瘤。值得注意的是,大多数接受治疗的癌症并未被证实与经典核孕酮受体的存在有关。
血管生成在肿瘤发育,增殖和转移中起着基本作用(1,2)。血管生成固有的分子途径为非小细胞肺癌(NSCLC)的有效疗法提供了几个靶标(1)。这些靶标包括血管内皮生长因子(VEGF),血小板衍生的生长因子(PDGF),成纤维细胞生长因子(FGF)及其相应的受体(2)。VEGF是众所周知的血管生成的关键调节剂,主要通过VEGF受体2(VEGFR2)促进血管结构发展,调节血管通透性和诱导血管泄漏的信号(3)。酪氨酸激酶抑制剂(TKI)通过与三磷酸腺苷(ATP)竞争激酶结构域的活性位点,抑制该途径中的多个受体(4)。PDGF途径通过其对周细胞和血管平滑肌细胞的影响在血管结构的发展和稳定中起作用(5)。FGF受体(FGFR)激酶激活信号通路,导致内皮细胞激活,周细胞的募集和血管平滑
不同的KRAS变体如何影响体内肿瘤的启动和进展。我们假设KRAS G12D或KRAS G12V突变启动肿瘤形成的能力取决于上下文。AMHR2-CRE小鼠在组织中发育到输卵管,子宫和卵巢中的组织中表达CRE重组酶。我们使用这些小鼠来有条件地表达KRAS G12V/ +或KRAS G12D/ +突变。具有基因型AMHR2-CRE PTEN(FL/ FL)KRAS G12D/ +(G12D小鼠)的小鼠具有异常的卵泡结构,并在18周内开发了低级浆液卵巢癌,其渗透率为100%。相比之下,具有基因型AMHR2-CRE PTEN(FL/ FL)KRAS G12V/ +(G12V小鼠)的小鼠具有正常的卵泡结构,其中约90%的子宫肿瘤具有类似于平滑肌瘤和Leiomyosarcomarcoma的组织学特征多样的组织学特征。颗粒细胞肿瘤也在G12V小鼠中发展。 使用RNA测序和反相蛋白阵列分析鉴定出G12D和G12V小鼠子宫组织中细胞信号途径的差异。 我们发现CTNNB1,IL1A,IL1B,TNF,TGFB1,APP和IL6在G12V小鼠中的活性高于G12D小鼠。 这些小鼠模型将有助于研究由KRAS G12V/ +或KRAS G12D/ +突变驱动的信号传导途径的差异,以帮助开发针对特定的KRAS突变变体的靶向疗法。 由KRAS G12V/ +突变驱动的我们的平滑肌瘤模型也将有助于解密从平滑肌瘤到平滑肌肉瘤的恶性发展。颗粒细胞肿瘤也在G12V小鼠中发展。使用RNA测序和反相蛋白阵列分析鉴定出G12D和G12V小鼠子宫组织中细胞信号途径的差异。我们发现CTNNB1,IL1A,IL1B,TNF,TGFB1,APP和IL6在G12V小鼠中的活性高于G12D小鼠。这些小鼠模型将有助于研究由KRAS G12V/ +或KRAS G12D/ +突变驱动的信号传导途径的差异,以帮助开发针对特定的KRAS突变变体的靶向疗法。由KRAS G12V/ +突变驱动的我们的平滑肌瘤模型也将有助于解密从平滑肌瘤到平滑肌肉瘤的恶性发展。
我们提供了基本心血管生物学和疾病的广泛跨学科培训,以及非心血管疾病(例如癌症和神经退行性疾病),其中心血管功能障碍起着至关重要的作用。受训者将接触到所有主要科学学科,包括细胞和分子生物学,免疫学,生物医学工程,神经科学,生物化学,药理学和遗传学/OMICS,仅举几例。该计划的核心部分是有机会与我们的42个CVTG导师中的一位或多个进行高影响原始的简历研究。此外,我们还提供众多的研讨会,研讨会,专业课程和其他旨在优化您进行真正出色研究能力的活动。研究重点的领域包括对基本心血管功能的研究(侧重于平滑肌,内皮和白细胞),以及心血管疾病(侧重于动脉粥样硬化,高血压和中风)。我们的教职员工及其学员使用最先进的实验方法来解决医学科学中一些最重要的问题。我们研究的一个主要且持续的重点是开发新的药物,设备,诊断方法和治疗方法,以促进对心血管疾病的治疗。
抽象的脑血管痉挛是动脉瘤性蛛网膜下腔出血(asah)的主要并发症之一。血管痉挛一词通常是指血管造影发现,并且在临床上通过延迟的神经系统恶化和延迟的脑缺血来定义。有症状的血管痉挛发生在20%至40%的ASAH患者中,并且是最知名的管理组成部分之一。可以通过使用床边的方式和射线照相在临床上进行诊断。管理始于使用预防措施,增强大脑灌注,逆转尝试以及使用脑部保护。早期使用机械或药理血管成形术的血管内治疗仍然是一种合理的方法。的经验性好处是使用脑血管扩张剂,例如氮氨基胺和米尔林酮,以及使用诱导的高血压用于脑灌注增强。spasmo-genic阻断,平滑肌收缩和脑部保护的剂量在很大程度上仍然是实验性的。这项叙述性评论旨在向伊萨(Asah)血管痉挛的机制,诊断,预防和管理更新读者。
一词动脉粥样硬化由两个部分组成:动脉粥样硬化(脂肪的积累,伴有几种巨噬细胞)和硬化症(包括平滑肌细胞的纤维化层。高脂血症的存在是冠状动脉疾病的主要风险问题因素。在2016年,动脉粥样硬化研究的进展集中在发现和验证新靶向遗传学以及与动脉粥样硬化心脏病的机理联系上。使用Google表格链接进行了对大学生肝硬化的危险因素和并发症的认识的调查。我们已经在100名大学生中分发了调查。饼图和条形图用于表示输出变量。结果表明,心血管的知识为54.00%,而46.00%的人说是。中风由于缺乏血液供应而导致44.00%的人说心脏,有50.00%的人说Brain,而6.00%的人说我不知道。这些发现得出的结论是,大多数人口不知道肥胖,LDL和家族史等危险因素,这些风险因素导致动脉粥样硬化的发展,但只有少数人群意识到压力,吸烟,冠心心脏病发作,胆固醇,胆固醇,睡眠呼吸暂停,工作压力,工作压力,身体疾病,身体疾病,心脏病,冠心病,领导。
子宫平滑肌肉瘤是一种恶性肿瘤,复发率很高。3、6 它们起源于子宫肌层或子宫肌层血管。一小部分起源于先前存在的平滑肌瘤。在 60% 的病例中,疾病仅限于子宫。平滑肌瘤和快速生长肿瘤中肉瘤的发生率分别为 0.23% 和 0.27%。7 由于肿瘤不断增大,患者通常表现出非特异性腹部/盆腔症状,肿块最初由腹部/盆腔超声检查发现。在这些情况下,绝经后患者出现子宫肿块并怀疑子宫肌瘤时,应怀疑子宫肉瘤。预后因素包括肿瘤大小 >5 cm。最常见的扩散方式是血源性扩散,淋巴扩散很少见。据报道,I 期和 II 期疾病的复发率高达 70%,复发部位位于远端,最常见的是肺部或上腹部。6、8-10 生存率取决于诊断时的疾病分期。6、11 I 期的五年生存率为 50-55%,II-IV 期的五年生存率为 8-12%。总体而言,所有分期的五年生存率约为 30% 至 50%。3、6、9
子宫平滑肌瘤或肌瘤是雌性生殖道的最常见的良性,是由肌层的平滑肌和结缔组织引起的。子宫肌瘤可能从几毫米到直径超过20 cm的巨大生长[1,2]明显差异[1,2]。它们通常会引起严重的症状,例如由于大小和位置而引起的重量大量出血(月经),骨盆疼痛和与压力有关的不适。对年轻患者(尤其是尚未构想的年轻患者)进行了大型肌瘤,由于需要在有效的治疗与未来的生育能力之间取得平衡,因此提出了独特的挑战[3,4]。在某些保守派社会(例如阿拉伯人)中,对生殖器手术有很多担忧。例如,他们认为该女人的构想能力表明了她的尊严和社会地位[5,6]。此外,开放术疤痕的社会污名会造成心理负担[7]。识别提供最佳外科手术外的外科手术选择并解决患者的担忧至关重要。腹腔镜肌瘤切除术等小小的侵入性技术提供了与开放手术相对于开放手术的优势,包括减少术后疼痛,较短的医院和较短的医院和恢复时间[4,8,8,8,8,8,8,8,8,8,8,9]。
大脑与来自身体内部环境的内脏信号密切相关,神经、血液动力学和外周生理信号之间存在众多关联。我们表明,这些大脑-身体共同波动可以通过单个时空模式捕获。在几个独立样本以及单回波和多回波 fMRI 数据采集序列中,我们发现静息状态全局 fMRI 信号、神经活动和一系列涵盖心血管、肺、外分泌和平滑肌系统的自主信号之间存在低频范围(0.01 - 0.1 Hz)的广泛共同波动。在静息状态下观察到的相同大脑-身体共同波动是由提示性深呼吸和间歇性感官刺激引起的唤醒以及睡眠期间的自发相位 EEG 事件引起的。此外,我们还发现,在实验性抑制呼气末二氧化碳 (PETCO2) 变化的情况下,整体 fMRI 信号的空间结构得以维持,这表明伴随觉醒而出现的呼吸驱动动脉 CO2 波动无法解释这些信号在大脑中的起源。这些发现证实,整体 fMRI 信号是自主神经系统控制的觉醒反应的重要组成部分。