抽象的黑色士兵蝇(BSF)幼虫一直是在鱼类和家禽粉中使用的有前途的蛋白质来源,可有效替代植物性蛋白质来源。目前,尚无乳酸细菌发酵竹子的影响以改善BSF幼虫的营养。这项研究的主要目的是确定蛋白质:富含乳酸菌细菌的发酵竹头膜纤维(Bambusa beecheyana)的BSF幼虫的脂肪比和生长速率。lactobacillus plantarum和Brevibacillus parabrevis,并成功地进行了21天。我们的结果表明,与仅由BSF幼虫与蔬菜废物组成相比,与发酵的竹制纤维纤维和发酵竹纤维纤维纤维和植物废物混合的植物veg217(1:1)与发酵的竹制纤维纤维和植物废物混合的平均体重(111%)和长度(30%)组成。有趣的是,与阴性对照(18天)相比,富含乳酸细菌的发酵竹子的BSF幼虫在短时间内(少于13天)也会pub养。所有用发酵竹和乳酸菌喂养的幼虫也
1 莱布尼茨神经生物学研究所,学习和记忆遗传学系,马格德堡,39118,德国,2 莱比锡大学生物研究所动物生理学系,莱比锡,04103,德国,3 莱比锡大学生物研究所遗传学系,莱比锡,04103,德国,4 魏茨曼科学研究所分子细胞生物学系,雷霍沃特,7610001,以色列,5 亚琛工业大学成像和计算机视觉研究所,亚琛,52074,德国,6 波多黎各大学医学科学园区神经生物学研究所,旧圣胡安,波多黎各,00901,7 剑桥大学生理学、发育和神经科学系,剑桥,CB2 3EL,英国,8 珍妮莉亚研究园区,霍华德休斯医学研究所,阿什本, 20147,弗吉尼亚州,9 莱布尼茨神经生物学研究所,组合神经影像核心设施,马格德堡,39118,德国,10 加利福尼亚大学,分子,细胞和发育生物学系,加利福尼亚州洛杉矶 90095-1606,11 巴黎萨克雷大学,国立科学研究中心,巴黎萨克雷神经科学研究所,萨克雷,91400,法国,12 行为脑科学中心,马格德堡,39106,德国,13 奥托冯格里克大学生物学研究所,马格德堡,39120,德国
1个解析(生态系统动力学和可持续性),ifremer,inrae,agro -agro -agro -agrocampus ogrocampus ouest Institute,Nantes 44311,法国2法国生物学研究所,écolenormale normalesupérieure(ibens),ibens(ibens),埃科勒·诺米尔·诺尔·诺莱尔·苏帕利·苏普雷尔(Normale NormaleSupérieure Ecosystem and Landscape Evolution, Institute of Terresrial Ecosystems, Department of Environmental Systems Science, ETH Zürich, Zürich, 8092, Switzerland 4 Unit of Land Change Science, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland 5 Group of Geospatial Molecular Epidemiology (Geome) Geochemistry (LGB), School of Architecture, Civil和环境工程(ENAC),洛桑联邦理工学院(EPFL),洛桑,1015,瑞士6 Spygen,Le Bourget-du-lac,73370,法国7 Fundacion Biodiversa,Bogotá,Bogotá,Bogotá,Calle 65; 111221,哥伦比亚8河研究院,国家农业食品和环境研究所(INRAE),Villeurbanne,69100,法国
欧洲鳗鱼(Anguilla anguilla)是欧洲渔业和水产养殖中具有重要商业价值的物种,在圈养环境中关闭其生命周期的尝试仍处于开拓阶段。该物种的第一个喂养阶段的特点是孵化后 20 至 24 天之间的关键时期(dph),此时期与死亡有关,表明无法挽回。我们推测这个关键时期可能还与幼虫-细菌相互作用和幼虫的免疫状态有关。为了验证这一点,从内源喂养结束(9 dph)到 28 dph,对三种实验性首次喂养饮食(饮食 1、饮食 2 和饮食 3)的反应,探索了孵化场生产的幼虫的细菌群落组成以及免疫和应激相关基因的表达。还跟踪了水中细菌群落组成的变化。结果表明,幼虫应激/修复机制在此关键时期被激活,以 hsp90 基因表达上调为标志,与所喂食的食物无关。同时,在所有食物组中都观察到向潜在有害幼虫细菌群落的转变。此时,观察到幼虫细菌群落的均匀性显著降低,并且属于潜在有害细菌属的几种扩增子序列变体更加丰富。这表明有害的幼虫-细菌相互作用可能与观察到的死亡率有关。在关键期之后,喂食食物 3 的幼虫的存活率最高。有趣的是,编码病原体识别受体 TLR18 和补体成分 C1QC 的基因在该组中上调,可能表明免疫能力更高,有助于更成功地处理在 22 日龄时主导幼虫细菌群落的有害细菌,最终导致与其他两组相比更好的存活率。
摘要具有数以千计的基因组关联研究对复杂特征鉴定的基因座,需要在体内模型系统中可靠,迅速推断大量候选基因的作用。基于F 0斑马鱼中的基于CRISPR/CAS9的功能屏幕代表这样的系统。然而,到目前为止使用的负面对照 - 包括加扰的指南RNA(GRNA),灭活的CAS9和假注射 - 不会引起与CRISPR/CAS9相同的细胞和有机反应,并且可能会加剧结论。在这里,我们表明,靶向KITA促进了成功的诱变,更高质量的成像数据以及病例和对照的有效分类的有效的光学预筛查。我们鉴定并测试了两个靶向具有类似高诱变效率和对色素作用的kita的GRNA,并且没有对心脏代谢性状的脱靶效应或主要影响。我们提出了几种方法,这些方法将得出有效的,公正的结论。
Black Soldier fly ( Hermetia illucens ) larval (BSFL) frass was examined for its nutrient nitro- gen, phosphate and potassium (N:P 2 0 5 :K 2 O), phytohormone and biogenic amine content, its plant growth promoting activity, and screened to test the hypothesis that bacteria charac- teristic of the genus Enterococcus (present in the biome of decaying餐饮废物和幼虫的肠被BSFL排出。FRASS植物促进活性的促进活性是通过比较经过弗拉斯处理的土壤中的冬小麦浆果(Triticum aestivum)与未经处理(对照)土壤的生长的。n:p 2 0 5:k 2 o干物质平均水平,FRASS的生物胺和植物激素含量分别通过标准土壤分析,HPLC和HPLC/GC-MS方法确定。所有的浓度都太低,无法解释其植物生长促进活性。添加到土壤中的FRASS诱导了对照植物的空中质量增加11%,并且芽的长度增加了。在BEA(胆汁蛋白 - 阿戈尔)板上生长的肠球菌的许多菌落在直接从幼虫中检测到的frass板,这证实了可行的肠球菌从幼虫肠道中传递到其菌丝中的假设。由于以前已经将许多根瘤菌(包括肠球菌)确定为幼虫肠生物群的一部分在赋予其植物生长促进活性方面发挥作用。
妊娠按蚊疟疾媒介依靠化学和物理(包括微生物)线索来选择优选的产卵栖息地。这项研究的重点是评估细菌组成和栖息地代谢物对灌溉和非灌溉潜在幼虫源中疟疾媒介幼虫可用性的影响。从霍马湾县灌溉和非灌溉地区的幼虫阳性和阴性栖息地采集水样。对从水样中培养的细菌进行基质辅助激光解吸电离-飞行时间质谱 (MALDI-TOF MS) 以进行物种鉴定。从菌落中提取 DNA,并进行聚合酶链式反应 (PCR) 和测序。最后,确定幼虫阳性和阴性栖息地的代谢物组成。MALDI-TOF MS 结果显示,芽孢杆菌是从非灌溉区幼虫源中鉴定出的唯一属。在灌溉区,志贺氏菌为优势属(47%),大肠杆菌为丰富种(13/51)。在测序的分离株中,65% 为芽孢杆菌。分离出杀幼虫分离株短芽孢杆菌、枯草芽孢杆菌和深小芽孢杆菌,并将其与莫哈文芽孢杆菌、特基勒芽孢杆菌、粪类芽孢杆菌和农业短芽孢杆菌归为一类。有幼虫的灌溉区与无幼虫的灌溉区相比,粗脂肪(0.01%)和蛋白质含量(0.13%)降低。在灌溉区和非灌溉区,总叶绿素含量高的栖息地(1.12 μ g/g vs 0.81 μ g/g 和 3.37 μ g/g vs 0.82)都有幼虫存在。灌溉和非灌溉地区有幼虫的水生栖息地的糖浓度高于没有幼虫的栖息地;然而,相比之下,有幼虫的非灌溉地区的糖浓度高于灌溉地区的类似栖息地。此外,在灌溉和非灌溉地区含有幼虫的水生栖息地中发现了大量锰、钙和铜的浓度。这些结果允许对潜在的杀幼虫剂或杀虫剂进行前瞻性检查。
肠结核病产生能够在害虫中引起毒性的杀虫蛋白,但这些蛋白质的杀虫机制用于昆虫控制尚不清楚。为了阐明机制,通过腹膜内注射或喂食将纯化的杀虫蛋白来自E. cloacae nk的Mellonella幼虫。分别通过血细胞仪,膜联蛋白V-FITC/PI和UV-VIS SpectroPhotrophotomer计检测到血细胞的数量,免疫细胞中的凋亡和G. mellonella幼虫的多酚氧化酶(PO)活性。随着NK杀虫蛋白的侵袭时间的延长,梅洛尼氏菌幼虫中血细胞的数量显着降低(p <0.05),而血细胞的凋亡率增加。PO的活性显示出峰值下降的趋势,同时加深了黑素化反应。此外,血细胞的吞噬作用和涂料能力降低,腹膜内注射方法比喂养方法更有效。一起,大肠杆菌NK的杀虫蛋白抑制并破坏了梅洛内拉幼虫的细胞免疫反应,这表明在杀死宿主昆虫中起着重要作用。
1 免疫学-疫苗学,传染病和寄生虫病系,动物与健康基础与应用研究(FARAH),列日大学兽医学院,B-4000 列日,比利时 2 斑马鱼发育与疾病模型实验室,GIGA-疾病分子生物学,列日大学,B-4000 列日,比利时 3 MRC-格拉斯哥大学病毒研究中心,格拉斯哥 G61 1QH,英国 4 UMR-I 02 环境应激与水环境生物监测(SEBIO),UFR 精确与自然科学,兰斯香槟阿登大学,CEDEX 2,51687 兰斯,法国 5 香农理工大学生物科学研究所, N37 HD68 阿斯隆,韦斯特米斯郡,爱尔兰 * 通信地址:owen.donohoe@uliege.be (OD);a.vdplasschen@uliege.be (AV);电话:+32-4-366-43-79 (OD);+32-486-45-13-53 (AV) † 这些作者对本文的贡献相同。
成年果蝇的抽象蘑菇体(MB)具有成千上万个肯尼因神经元的核心;早期出生的G类的轴突形成一个内侧叶,而后来出生的α'β”和αβ类形成内侧和垂直叶。幼虫仅用γ神经元孵化,并使用其γ神经元的幼虫特异性轴突分支形成垂直叶“ facsimile”。MB输入(MBIN)和输出(MBON)神经元将Kenyon神经元裂片分为离散的计算室。幼虫有10个这样的隔室,而成年人有16个。我们确定了定义10个幼虫室的32个Mbons和Mbins中的28个命运。随后将七个箱子纳入成人MB;他们的四个Mbins死亡,而12个Mbins/ Mbons重塑以在成人隔室中起作用。其余三个隔间是特定于幼虫的。在变形时,它们的MBIN/MBONS跨不同分化,将MB留给其他成人脑电路。成人垂直裂片是使用从成人特异性神经元池招募的Mbons/Mbins制成的。细胞死亡,隔室转移,跨差异和募集新神经元的结合导致没有通过变质维持幼虫mbin-mbon连接。在这个简单的层面上,我们没有发现从幼虫到成人的记忆痕迹的解剖基板。反差异神经元的成年表型代表其进化的祖先表型,而其幼虫表型是幼虫阶段的衍生象征。这些细胞主要出现在也产生永久MBIN和MBON的谱系中,这表明幼虫指定因子可以允许与出生或同胞身份相关的信息以幼虫的修改方式解释,以使这些神经元获得幼虫表型修饰。变形时这种因素的丧失允许这些神经元恢复其在成年人中的祖先功能。
