日内瓦和班加罗尔,2024 年 6 月 11 日——全球抗生素研究与开发伙伴关系 (GARDP) 和 Bugworks Research Inc. (Bugworks) 今天宣布了一项合作协议,共同开发一种具有广谱抗生素活性的创新化合物 (BWC0977),用于对抗导致危及生命的感染的多重耐药细菌。根据协议,GARDP 将向 Bugworks 提供高达 2000 万美元的技术和资金支持,用于 BWC0977 的药物和临床联合开发。作为回报,Bugworks 授予 GARDP 在 146 个国家/地区制造和商业化 BWC0977 的权利,这些国家几乎都是中低收入 (LMIC)。BWC0977 具有体外活性,可对抗导致严重医院内感染(如肺炎、血流感染和复杂性尿路感染)的多种病原体。这些病原体包括世卫组织的关键优先病原体、耐碳青霉烯类的鲍曼不动杆菌和肺炎克雷伯菌,这些病原体目前几乎没有治疗选择。根据 GRAM 的研究,仅这两种病原体就占了 2019 年抗生素耐药性 (AMR) 相关死亡人数的五分之一以上。研究还显示,在全球许多国家,超过 80% 的鲍曼不动杆菌临床分离株对卡巴培南类抗生素具有耐药性。GARDP 执行董事 Manica Balasegaram 表示:“我们很高兴与 Bugworks 合作,在化合物 BWC0977 开发的关键阶段进行重点投资。抗生素管线中的许多化合物缺乏创新特性,未能针对优先病原体。相比之下,BWC0977 因其新颖性和满足未满足的公共卫生需求的潜力而脱颖而出。” Bugworks 联合创始人兼首席执行官 Anand Anandkumar 表示:“Bugworks 很高兴与 GARDP 合作,通过临床开发推进化合物 BWC0977 的研发,以治疗各种耐药性细菌感染。此次合作的首要目标是让西方国家和 AMR 负担较重的中低收入国家同时获得这种化合物。我们感谢 CARB-X 对 BWC0977 的持续支持,从先导化合物优化到人体临床试验,从而使该资产能够进入 GARDP 合作轨道。” BWC0977 的开发反映了全球卫生生态系统为应对 AMR 危机而加强的决心。Bugworks 成立于 2014 年,在印度班加罗尔的细胞和分子平台中心 (C-CAMP) 孵化。自 2017 年以来,
植食性昆虫已经进化出复杂的解毒系统来克服许多植物产生的抗食草动物化学防御。然而,这些生物转化系统在通才和专才昆虫物种中有何不同,以及它们在确定昆虫宿主植物范围方面的作用仍是一个悬而未决的问题。在这里,我们表明 UDP - 葡萄糖基转移酶 (UGT) 在确定 Spodoptera 属内昆虫物种的宿主范围方面起着关键作用。对宿主植物宽度不同的 Spodoptera 物种进行比较基因组分析,发现在通才物种中 UGT 基因数量相对保守,但在专才 Spodoptera picta 中 UGT 基因假基因化水平较高。CRISPR - Cas9 敲除 Spodoptera frugiperda 的三个主要 UGT 基因簇表明,UGT33 基因在使该物种利用禾本科植物玉米、小麦和水稻方面发挥重要作用,而 UGT40 基因促进棉花的利用。进一步的体内和体外功能分析表明,UGT SfUGT33F32 是使广谱 S. frugiperda 能够解毒苯并恶嗪类化合物 DIMBOA(2,4-二羟基-7-甲氧基-2H-1,4-苯并恶嗪-3(4H)-酮)的关键机制,DIMBOA 是由禾本科植物产生的强效杀虫毒素。然而,虽然这种解毒能力在几种广谱 Spodoptera 物种中得到了保留,但专食文殊兰植物的 Spodoptera picta 因 SpUGT33F34 的非功能性突变而无法解毒 DIMBOA。总之,这些发现为了解昆虫 UGT 在宿主植物适应中的作用、广谱和专谱之间进化转变的机制基础提供了见解,并为控制一组臭名昭著的害虫提供了分子目标。
近年来,量子点材料作为光子吸收剂引起了人们的注意。它们的出色特性,包括高吸收系数,长载体扩散长度和低温兼容沉积,使其成为适合在多个光谱频段(例如可见的,近乎红外和X射线)中检测光子的合适候选物。这已被利用以开发宽光谱范围的图像传感器。图1显示了在CMOS芯片顶部沉积的量子点层的概念。CMOS过程的顶部金属用作与堆叠的量子点光子吸收器接触的像素底部电极。公共顶部电极由透明的导电层制成。
保留所有权利。未经许可不得重复使用。 (未经同行评审认证)是作者/资助者,他已授予 medRxiv 永久展示预印本的许可。此预印本的版权所有者此版本于 2024 年 3 月 3 日发布。;https://doi.org/10.1101/2023.10.10.23296794 doi:medRxiv 预印本
摘要 已获许可药物组成的药物库代表了调节人类生理过程的大量分子,为发现针对宿主的抗病毒药物提供了独特的机会。我们筛选了包含约 12,000 个分子的 Repurposing、Focused Rescue 和 Accelerated Medchem (ReFRAME) 药物库,以寻找广谱冠状病毒抗病毒药物,并发现了 134 种抑制 α 冠状病毒的化合物,并映射到 58 个分子靶标类别。主要靶标包括 5-羟色胺受体、多巴胺受体和细胞周期蛋白依赖性激酶。敲除这些药物的宿主靶标,包括组织蛋白酶 B 和 L(CTSB/L;VBY-825)、芳烃受体(AHR;Phortress)、法呢基二磷酸法呢基转移酶 1(FDFT1;P-3622)和 kelch 样 ECH 相关蛋白 1(KEAP1;Omaveloxolone),显著调节了 HCoV-229E 感染,证明这些化合物通过作用于各自的宿主靶标来抑制病毒。对所有 134 种主要化合物候选物与 SARS-CoV-2 进行反向筛选,并在原代细胞中进行验证,确定了 Phortress(一种 AHR 激活配体)、P-3622 靶向 FDFT1 和 Omaveloxolone(一种通过将 NFE2 样 bZIP 转录因子 2 (NFE2L2) 从其内源性抑制剂 KEAP1 中释放出来而激活 NFE2 样 bZIP 转录因子 2 (NFE2L2))作为 Alpha 和 Betacor 病毒的抗病毒候选物。本研究概述了 HCoV-229E 重新利用候选物,并揭示了被各种冠状病毒劫持的新型潜在可用药病毒宿主依赖因子。
。CC-BY-NC-ND 4.0 国际许可证(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2024 年 2 月 15 日发布。;https://doi.org/10.1101/2024.02.14.580225 doi:bioRxiv 预印本
氢氧化铜是一种广谱铜杀菌剂,通常用于控制作物真菌和细菌性疾病。除了控制靶向病原体外,氢氧化铜还可能影响植物层生态系统中其他非靶向微生物。在施用杀菌剂后的四个时间点(在喷涂之前和5、10和15天之前),通过使用Illumina高通量测序技术和生物学工具研究了患病和健康的烟草微生物微生物对氢氧化铜应激的反应。结果表明,健康群体的微生物组社区比疾病组更受影响,而真菌群落比细菌群落更敏感。疾病组中最常见的属是替代植物,波兰菌,cladosporium,pantoea,ralstonia,pseudomonas和sphinghomonas;在健康组中,这些是替代人,cladosporium,symmetrospora,ralstonia和pantoea。喷涂后,健康和患病组的真菌群落的α多样性在5天后下降,然后显示出越来越多的趋势,健康组在15天时显着增加。健康和患病群体中细菌群落的α多样性在15天时增加,而健康的组有显着差异。在健康和患病的叶片的真菌群落中,替代品和cladosporium的相对丰度降低了,而波动脉症,stagonosporopsis,Symmetroppora,Epicoccum和Phoma的相对丰度则增加。Pantoea的相对丰度首先减少,然后增加,而Ralstonia,Pseudomonas和Sphingomonas的相对丰度首先增加,然后在健康和患病的叶片的细菌群落中减少。虽然氢氧化铜降低了致病真菌替代性和cradosporium的相对丰度,但它也导致有益细菌(例如放线菌和Pantoea)的降低,并增加了潜在的病原体,例如波里米亚和稳定性。用氢氧化铜处理后,患病组的代谢能力得到了改善,而健康组的代谢能力得到了显着抑制,随着应用时间的延长,代谢活性逐渐恢复。结果揭示了在氢氧化铜应激下,微生物群落组成和健康和患病的烟草的代谢功能的变化,为未来对植物层的微生态保护的研究提供了理论基础。
积液 487 0.963(0.952, 0.975) 0.920(0.897, 0.945) 0.890(0.872, 0.907) 蛛网膜下腔出血 485 0.976(0.967, 0.985) 0.928(0.905, 0.953) 0.922(0.906, 0.938) 硬膜下血肿 482 0.958(0.946, 0.971) 0.898(0.873, 0.925) 0.890(0.872, 0.909) 气头畸形 474 0.967(0.956, 0.979) 0.922 (0.899, 0.947) 0.915 (0.899, 0.933) 脑实质出血 474 0.955 (0.943, 0.969) 0.901 (0.876, 0.928) 0.890 (0.873, 0.908) 多发性脑梗塞 465 0.865 (0.844, 0.887) 0.738 (0.699, 0.776) 0.866 (0.847, 0.886) 放射冠性脑梗塞 459 0.667 (0.636, 0.698) 0.560 (0.514, 0.606) 0.688 (0.662, 0.716) 腔隙性梗塞 456 0.687 (0.657, 0.719) 0.667 (0.623, 0.713) 0.596 (0.568, 0.624) 基底神经节缺血 454 0.861 (0.839, 0.885) 0.731 (0.692, 0.773) 0.865 (0.847, 0.885) 基底神经节脑梗塞 453 0.716 (0.687, 0.747) 0.561 (0.512, 0.609) 0.778 (0.754, 0.802) 缺血 444 0.928 (0.914, 0.945) 0.867 (0.838, 0.899) 0.837 (0.816, 0.858) 钙化 442 0.825 (0.801, 0.852) 0.692 (0.647, 0.738) 0.836 (0.814, 0.858) 软化灶 436 0.917 (0.900, 0.935) 0.853 (0.821, 0.890) 0.833 (0.811, 0.856) 挫伤 424 0.954 (0.940, 0.969) 0.906 (0.880, 0.934) 0.897 (0.879, 0.914) 尾状核头部脑梗死 422 0.898 (0.878, 0.916) 0.820 (0.784, 0.855) 0.813 (0.790, 0.836) 脑室周围脑梗死 397 0.803 (0.777, 0.829) 0.713 (0.668, 0.758) 0.733 (0.707, 0.759) 结节 362 0.819 (0.792, 0.846) 0.671 (0.624, 0.721) 0.830 (0.810, 0.852)脑室内出血 323 0.986 (0.978, 0.995) 0.944 (0.923, 0.969) 0.942 (0.929, 0.957) 脑肿胀 315 0.952 (0.938, 0.969) 0.898 (0.867, 0.933) 0.880 (0.862, 0.900) 硬化 272 0.840 (0.810, 0.872) 0.746 (0.695, 0.801) 0.823 (0.799, 0.844) 占位性病变 261 0.925 (0.904, 0.946) 0.862 (0.820, 0.904) 0.847 (0.827, 0.869) 硬膜外血肿 252 0.947 (0.927, 0.967) 0.893 (0.857, 0.929) 0.892 (0.875, 0.912) 脑水肿 216 0.965 (0.952, 0.981) 0.903 (0.866, 0.944) 0.900 (0.882, 0.918) 轻微出血 212 0.966 (0.953, 0.982) 0.910 (0.873, 0.953) 0.892 (0.874, 0.911) 丘脑脑梗死 205 0.713 (0.671, 0.754) 0.610 (0.546, 0.673) 0.690 (0.662, 0.717) 软组织肿胀 203 0.937 (0.916, 0.962) 0.877 (0.833, 0.926) 0.852 (0.831, 0.873) 动脉硬化 196 0.810 (0.771, 0.849) 0.668 (0.602, 0.735) 0.831 (0.809, 0.853) 实质性血肿 176 0.982 (0.971, 0.995) 0.949 (0.920, 0.983) 0.938 (0.924, 0.952) 半卵圆中心脑梗塞 151 0.733 (0.690, 0.781) 0.702 (0.636, 0.775) 0.663 (0.635, 0.693) 顶叶脑梗塞 148 0.788 (0.742, 0.836) 0.622 (0.541, 0.703) 0.874 (0.856, 0.894) 额叶脑梗塞 123 0.729 (0.674, 0.787) 0.537 (0.447, 0.626) 0.880 (0.862, 0.899) 蛛网膜囊肿 119 0.844 (0.806, 0.886) 0.714 (0.639, 0.798) 0.831 (0.809, 0.852) 脑积水 108 0.999 (0.998, 1.000) 0.991 (0.981, 1.000) 0.969 (0.961, 0.980) 脑白质变性 107 0.831 (0.787, 0.878) 0.682 (0.598, 0.776) 0.851 (0.830, 0.871) 室旁缺血 104 0.875 (0.834, 0.921) 0.702 (0.615, 0.798) 0.938 (0.925, 0.953) 透明隔腔 102 0.842 (0.801, 0.887) 0.814 (0.745, 0.892) 0.689 (0.662, 0.716) 皮下血肿 102 0.896 (0.857, 0.936) 0.843 (0.775, 0.912) 0.816 (0.793, 0.837) 颞叶骨折 101 0.915 (0.875, 0.959) 0.871 (0.812, 0.941) 0.831 (0.809, 0.854) 额叶缺血 92 0.842 (0.795, 0.893) 0.815 (0.739, 0.891) 0.753 (0.729, 0.778) 硬膜下出血 89 0.985 (0.971, 1.000) 0.955 (0.921, 1.000) 0.943 (0.930, 0.957) 脑室扩大 83 0.992 (0.985, 1.000) 0.976 (0.952, 1.000) 0.817 (0.795, 0.839) 顶骨骨折 83 0.909 (0.864, 0.960) 0.880 (0.807, 0.952) 0.831 (0.809, 0.854) 枕骨骨折 82 0.922 (0.881, 0.971) 0.878 (0.817, 0.951) 0.867 (0.847, 0.886) 枕叶脑梗塞 73 0.918 (0.877, 0.962) 0.849 (0.767, 0.932) 0.841 (0.819, 0.862) 额骨骨折 71 0.875 (0.821, 0.936) 0.817 (0.732, 0.915) 0.760 (0.736, 0.784) 骨瘤 70 0.844 (0.790, 0.906) 0.743 (0.643, 0.843) 0.865 (0.845, 0.886)
不应发展抵抗。此外,由于不同病毒使用重叠的细胞途径和因素来支持其复制(4)和抗病毒防御系统通常以这些常见途径为目标,因此HTA可以表现出广泛的光谱活性(5)。因此,HTA具有治疗病毒疾病的类别,而病毒剂跨越了多个病毒家族。重要的是,广谱HTA具有在大流行病开始时提供快速治疗溶液的潜力,从而减少了新型病毒鉴定和药理干预之间的时间(6,7)。超出了这种定期需求,HTA可以治疗患有不同家族病毒感染风险的患者,例如在免疫抑制治疗期间患有疱疹病毒,帕托病毒,多瘤病毒,肝瘤病毒,肝癌,肝癌和可可菌感染风险升高的患者(8、9)。
摘要:我们以前通过将胆固醇与EK1联系在一起,通过聚乙烯乙二醇(PEG)接头将胆固醇与EK1联系起来,这表现出有效的Pan-CoV抑制活性。但是,PEG可以在体内引起对PEG的抗体,这会减弱其抗病毒活性。因此,我们通过用短肽在EK1C4中代替EK1C4中的PEG接头,设计和合成了脱甲化的脂蛋白EKL1C EKL1C。与EK1C4相似,EKL1C表现出对严重急性呼吸综合征2(SARS-COV-2)和其他冠状病毒的有效抑制活性。在这项研究中,我们发现EKL1C还通过与病毒GP41的N末端Heptad重复1(HR1)相互作用,表现出对人免疫效力病毒1型(HIV-1)感染的广谱抑制活性,以阻断六螺旋束(6-HB)形成。这些结果表明,HR1是开发广谱病毒融合抑制剂的常见靶标,而EKL1C具有潜在的临床应用,作为候选治疗或预防剂,可抗冠状病毒,HIV-1,HIV-1,可能是其他I类包裹的病毒。