此外,在帕金森氏病,抑郁症,躁郁症,焦虑症和精神分裂症等精神病和神经系统疾病中观察到的时间感知的扭曲仍然知之甚少(Teixeira等,2013)。例如,患有抑郁症的人通常集中于过去的过去经历,并且经常报告时间似乎缓慢甚至感觉已经停止了(Ren等,2023)。同样,患有帕金森氏病的患者也倾向于感知时间更慢。另一方面,焦虑会引起时间的加速感知,尤其是在高压力和唤醒时期(Holman等,2023)。患有注意力缺陷多动障碍的人可能会感觉到时间比实际的时间更快或慢(Ptacek等,2019)。Stanghellini等。发现,精神分裂症患者可能将时间的看法描述为缺乏连续性,而感到彼此断裂的时刻(Stanghellini等,2016)。这可能表现为即时时间流的损失,使事件感到孤立和无关,这有助于组织日常活动和维持社交互动的困难。因此,时间感知的研究不仅是理解人类认知的基础,而且对实用应用具有巨大的潜力,这些应用可能会对个人和社会福祉产生积极影响,并且对于诊断和治疗各种精神病学和神经疾病具有实际意义。
序列功能模型可预测基因组DNA序列的基因表达,已证明对许多生物学任务有价值,包括了解顺式调节语法和解释非编码遗传变异。然而,当前的最新模型已在很大程度上接受了来自健康组织或细胞系的散装表达谱的培训,并且还没有学会在大型单细胞转录组数据集中捕获的精确细胞类型和状态的特性。因此,他们缺乏在各种组织和疾病环境中的特定细胞类型或状态下执行这些任务的能力。为了解决这一差距,我们提出了Decima,该模型可以从其周围的DNA序列中预测基因的细胞类型和条件 - 特异性表达。decima在超过2200万个细胞的单细胞或单核RNA测序数据上进行了训练,并成功地基于其序列成功预测了看不见基因的细胞类型特异性表达。在这里,我们证明了Decima揭示驱动细胞类型特异性基因表达的顺式调节机制及其在疾病中的变化,以预测细胞类型分辨率下的非编码变异效应,并使用精确调谐的,情境特异性功能设计调节性DNA元件。
深度学习模型越来越多地用于在DNA序列上执行各种任务,例如预测组织和细胞类型特异性序列活性,得出顺式调节规则,预测非编码变异效应以及设计合成调节序列。但是,这些模型需要专门的知识来正确构建,训练和解释。此外,由于模型和不同组构建的软件之间缺乏互操作性,该领域受到了阻碍。在这里,我们提出了Grelu,这是一个综合的软件框架,使用户可以轻松地执行高级序列建模管道,包括数据预处理,模型培训,超参数调整,评估,解释,解释,变体效应预测和新型调节元素的设计。该软件伴随着一个模型动物园,其中包含可以轻松下载,应用和微调的最先进的预培训模型。该框架和资源将在DNA序列建模领域加速研究,并实现合成调节元件的有效设计。
背景寡核心(大理石小核心)是英国非常相似的寡寡头物种的三人之一。应安全地识别O. strigilis,O。Latruncula或O. versicolor,应检查生殖器。大理石小的小趋势尤其是用白色和棕色/黑色标记的,但与其他物种的外观有很多重叠,而在这三种物种中均经常出现黑色素形式。雄性生殖器是独特的,在O. strigilis中具有长而薄的竖琴(或“ clasper”),而女性则由bursae和antrum的尖锐的交界处鉴定出来(参见Townsend等人,2010年)。基因组组装来自雄性,并通过生殖器检查以及通过DNA条形码确认了鉴定。南(南部,1907年),在他对英国飞蛾的影响力很大(Grb在开始捕获时,它在开始捕获时很广泛,尽管他还不太老),将这三个物种视为一个物种,大理石大小,并且它们经常被混合在一起以录制,作为一种物种,是一种物种。南(南部,1907年),在他对英国飞蛾的影响力很大(Grb在开始捕获时,它在开始捕获时很广泛,尽管他还不太老),将这三个物种视为一个物种,大理石大小,并且它们经常被混合在一起以录制,作为一种物种,是一种物种。
digitalis purpurea(foxglove)是一种广泛分布的装饰植物,也是生物医学复合地高辛的生产商。在这里,我们提出了一个长期读取测序的基于测序的基因组序列,该基因组序列和基因模型的相应预测。高组装连续性由4.3 Mbp的N50表示,并且发现约96%的完整BUSCO基因支持完整性。这种基因组资源为对D. purpurea的花色素沉着的深入研究铺平了道路。鉴定了花色苷生物合成的结构基因和相应的转录调节剂。 红色和白色开花植物的比较显示,白色开花植物中花青素合酶基因的插入很大,很可能使该基因具有非功能性,并且可以解释花青素色素沉着的丧失。 此外,花青素生物合成激活剂MYB5在白色开花植物中显示了18 bp的缺失,导致蛋白质中6种氨基酸损失。 此外,我们发现在DPTFL1/CEN基因中插入大量插入,负责大末端花的发展。鉴定了花色苷生物合成的结构基因和相应的转录调节剂。红色和白色开花植物的比较显示,白色开花植物中花青素合酶基因的插入很大,很可能使该基因具有非功能性,并且可以解释花青素色素沉着的丧失。此外,花青素生物合成激活剂MYB5在白色开花植物中显示了18 bp的缺失,导致蛋白质中6种氨基酸损失。此外,我们发现在DPTFL1/CEN基因中插入大量插入,负责大末端花的发展。
但是,什么是机器学习?当然,这是一个流行语,在过去的几年中,它在广受欢迎。文献中有无数的定义,最有良好的定义是来自人工智能先驱阿瑟·塞缪尔(Arthur L. Samuel),后者将ML定义为“使计算机的学习领域,使计算机能够学习而无需明确编程。” 2我们更喜欢一个不太模糊的定义,其中ML是自动化计算机算法与有力的统计方法的组合,可以在丰富的数据集中学习(发现)HID-DEN模式。从这个意义上讲,统计学习理论为ML的统计基础提供了统计基础。因此,本文是关于统计学习的发展,而不是ML,因为我们将重点关注统计模型。ML方法可以分为三个主要群体:受监督,无监督和强化学习。本调查是关于监督学习的,该任务是学习将输入(解释变量)映射到输出(因变量)的函数,该函数基于组织为输入输出对的数据。回归模型属于此类。另一方面,无监督的学习是一类ML方法,它在没有预先存在的标签的数据集中发现未发现的模式,例如群集分析或数据压缩算法。最后,在强化学习中,代理商学会在环境中执行某些行动,从而使其获得最大的奖励。它通过探索和剥削知识来做到这一点,它通过重复提高奖励的重复试验而学习。这是几个人工智能游戏玩家(例如Alfago)以及顺序治疗(例如强盗问题)的核心。
摘要。人类活动识别在包括医疗保健和智能家居在内的各个领域都起着至关重要的作用。随着配备环境传感器的智能房屋的越来越多,人们对利用人工智能技术的兴趣越来越兴趣,以理解和认识到这些环境中的人类活动。但是,环境传感器收集的数据的规则和嘈杂性质提出了独特的挑战。为了应对这些挑战,我们建议使用接受传感器激活序列训练的预训练的嵌入式嵌入,通常是基于类似于GPT的架构的算法,以证明在智能家庭中日常生活的分类表现。此外,我们利用从一个环境中获得的知识来增强另一个环境的活动识别,研究转移学习的概念。结果表明,GPT变压器解码器的方法在多个数据集的精度和平衡精度方面优于其他算法。这些发现还突出了转移学习的潜力,从干净且大的数据集中,GPT跨解码器预先训练的嵌入在各种情况下显示出令人鼓舞的结果。
结果:我们表明,我们的Enzbert Transformer模型通过蛋白质语言模型的专业化而受过训练,可预测酶佣金(EC)数量,仅基于序列而优于单功能酶类预测的最先进的工具。在EC40基准上的第二级预测EC数量的预测中,精度从84%提高到95%。为了评估第四级的预测质量,这是最详细的EC数字,我们构建了两个新的基于时间的基准测试,以与最先进的方法ECPRED和DEEPEC进行比较:Macro-F1分别从41%提高到54%,从20%提高到20%。最后,我们还表明,使用一个简单的注意力图与EC预测任务上的其他经典性方法相当,或者比其他经典性方法更好。更具体地,注意图鉴定出的重要残基倾向于对应于已知的催化位点。量化,我们报告的最高F-GEAIN评分为96.05%,而经典的可解释性方法最多达到91.44%。
我们报告了能够对齐多个核苷酸序列的卷积变压器神经网络。神经网络基于图像分割中常用的U-NET,我们采用了该神经网络将其用于将未对准序列转换为对齐序列的U-NET。对于对齐场景,我们的ALI-U-NET神经网络已经接受过培训,在大多数情况下,它比MAFFT,T-Coffee,Muscle和Clustal Omega等程序更准确,同时比单个CPU核心上的类似准确的程序快得多。的限制是,神经网络仍针对某些对齐问题进行了专门训练,并且对于以前从未见过的差距分布而表现不佳。此外,该算法当前与48×48或96×96核苷酸的固定尺寸比对窗口一起工作。在此阶段,我们将研究视为概念证明,确信目前的发现可以扩展到更大的一致性,并在不久的将来将其扩展到更复杂的一致性方案。
UG信息科学智能分析ISE B.S. 艺术与科学11.0401信息科学/研究。 11UG信息科学智能分析ISE B.S.艺术与科学11.0401信息科学/研究。11