摘要 DNA 复制过程需要与其他 DNA 代谢交易协调,最终必须扩展到整个基因组,无论染色质状态、基因表达、二级结构和 DNA 损伤如何。DNA 复制的完整性和准确性对于维持基因组完整性、限制正常细胞中的转化以及为增殖的癌细胞提供靶向机会至关重要。因此,DNA 复制与染色质动力学和 3D 基因组结构紧密协调,我们才刚刚开始了解其背后的分子机制。虽然最近已经发现了很多关于 DNA 复制起始如何在不同基因组区域和核区域(所谓的“DNA 复制程序”)中组织和调节的信息,但我们对正在进行的复制叉的延长以及特别是对复制障碍的反应如何受到局部核组织的影响知之甚少。此外,核结构的特定组成部分如何参与复制应激反应仍然难以捉摸。在这里,我们回顾了已知的机制和因素,这些机制和因素协调了复制起始和压力下的复制叉进展,重点关注将基因组组织和核结构与细胞对复制干扰的反应联系起来的最新证据,并强调了开放的问题和未来的挑战,以探索这一令人兴奋的新研究途径。
1 土耳其尼代奥梅尔·哈利斯德米尔大学农业科学与技术学院农业遗传工程系,2 巴基斯坦拉合尔旁遮普大学分子生物学卓越中心,3 福建农林大学(FAFU)农学院豆科作物遗传与系统生物学中心/油料作物研究所,作物遗传、育种与综合利用教育部重点实验室,福州,4 巴基斯坦费萨拉巴德农业大学农学院植物病理学系,5 澳大利亚西澳大利亚州默多克默多克大学作物与食品创新中心国家农业生物技术中心,6 印度海得拉巴国际半干旱热带作物研究所(ICRISAT)基因组学与系统生物学卓越中心
。CC-BY-NC-ND 4.0 国际许可证(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。
在某些情况下,突变致癌基因的小分子抑制剂的鉴定导致了显著的肿瘤反应。尽管取得了这些成功,但许多癌症并不含有可用药的致癌基因突变,单一药物疗法很少导致肿瘤完全消退。为了系统地鉴定出其表达对于癌细胞系亚群的增殖和/或存活必不可少的基因,我们和其他人开发了基因组规模的方法,在数百种癌细胞系中进行功能丧失[RNA干扰(RNAi)和CRISPR-Cas9]筛选,以鉴定出特定环境下的必需基因(1-7)。这些努力已鉴定出WRN是微卫星不稳定癌症中的合成致死靶点,PRMT5是MTAP缺失肿瘤中的必需基因,以及透明细胞卵巢癌中的选择性EGLN1依赖性(8-12)。这些研究大多侧重于鉴定特定环境下细胞适应性所需的单个基因。然而,其他研究已经利用这些癌细胞系的基因依赖性模式来揭示基因
摘要 寨卡病毒 (ZIKV) 是一种重新出现的蚊媒黄病毒,可能对健康造成毁灭性后果。寨卡病毒感染对发育和神经系统的影响部分源于病毒触发细胞应激途径和扰乱转录程序。迄今为止,指导病毒限制和病毒-宿主相互作用的转录控制的潜在机制研究不足。激活转录因子 3 (ATF3) 是一种应激诱导的转录效应物,可调节参与多种细胞过程(包括炎症和抗病毒反应)的基因表达,以恢复细胞稳态。虽然已知 ATF3 在寨卡病毒感染期间上调,但 ATF3 的激活方式以及 ATF3 在寨卡病毒感染期间的具体作用尚不清楚。在本研究中,我们通过抑制剂和 RNA 干扰方法表明,ZIKV 感染会启动综合应激反应途径以激活 ATF4,进而诱导 ATF3 表达。此外,通过使用 CRISPR-Cas9 系统删除 ATF3,我们发现 ATF3 可限制 A549 细胞中的 ZIKV 基因表达。我们还确定 ATF3 可增强抗病毒基因(如 STAT1)和先天免疫途径中其他成分的表达,从而诱导 ATF3 依赖的抗 ZIKV 反应。我们的研究揭示了综合应激反应和先天免疫反应途径之间的串扰,并强调了 ATF3 在 ZIKV 感染期间建立抗病毒作用的重要作用。
为了理解 MMO 在促进恢复力以及评估和治疗战斗和作战应激伤亡方面的作用,首先必须考虑人类应激反应背后的基本原理。人类应激反应系统的作用是在外部威胁和环境变化的情况下维持体内平衡。它通过在威胁面前引发“战斗、逃跑或冻结”等保护性行为来实现这一点。应激反应系统还促进快速回忆过去的威胁信息。在极端压力下,这些反应和回忆系统会产生与威胁不成比例的行为和症状。参与应激反应的主要大脑系统包括杏仁核、海马体和前额叶皮层。1 这些区域都处理感官信息,但处理方式和速度不同。杏仁核从丘脑接收直接感官输入并快速识别威胁。在威胁面前,杏仁核会产生适当的战斗、逃跑或冻结反应信号。海马体和前额叶皮层接收相同的感官信息,但这些大脑区域的通路速度较慢,旨在整合额外的记忆和背景信息。在健康、无压力的个体中,这些通路调节或抑制杏仁核反应。长期或极端的
1. 细胞应激反应的分子机制 2. 转录相关应激异常引起的基因组不稳定性 3. RNA结合蛋白相分离介导的应激反应 4. 衰老引起的疾病相关基因组异常 5. 癌症、染色体异常等疾病的根本机制
侵入性真菌感染每年在全球造成超过160万患者,由于抗真菌药物数量有限(偶氮,echinocandins和polyeners)以及抗真菌耐药性的出现,因此难以治疗。转录因子CRZ1是细胞应激反应和毒力的关键调节剂,是一个有吸引力的治疗靶标,因为该蛋白在人类细胞中不存在。在这里,我们使用了CRISPR-CAS9方法在两个抗Caspofungin的c临床分离株中产生同基因CRZ1Δ菌株。glabrata分析了该转录因子在非脊椎动物(Galleria mellonella)和脊椎动物(小鼠)念珠菌病模型中对eChinocandins,胁迫耐受性,生物膜的形成和致病性的敏感性的作用。在这些临床分离株中,CRZ1破坏恢复了体外和体内模型中echinocandins的敏感性,并影响其氧气应激反应,生物膜形成,细胞大小和致病性。这些结果强烈表明,考虑到抗真菌抗性的出现和可用的抗真菌药物数量少,CRZ1抑制剂可能在针对真菌感染的新型雌激素中起重要作用。
原发性小头畸形(MCPH)是一种神经系统疾病,其特征是脑大小较小,导致许多发育问题,包括智力障碍,运动和语音延迟以及癫痫发作。迄今为止,已经确定了超过30个MCPH引起基因(MCPH)。在这些MCPH中,编码异常的纺锤形样细胞畸形相关蛋白(ASPM)的MCPH5是最常见的突变基因。ASPM调节有丝分裂事件,细胞增殖,复制应激反应,DNA修复和肿瘤发生。 此外,使用数据挖掘方法,我们已经证实,ASPM的高度表达与几种类型的肿瘤的预后不良相关。 在这里,我们总结了ASPM的神经和非神经学功能,并洞悉了其对MCPH和癌症的诊断和治疗的影响。ASPM调节有丝分裂事件,细胞增殖,复制应激反应,DNA修复和肿瘤发生。此外,使用数据挖掘方法,我们已经证实,ASPM的高度表达与几种类型的肿瘤的预后不良相关。在这里,我们总结了ASPM的神经和非神经学功能,并洞悉了其对MCPH和癌症的诊断和治疗的影响。