肿瘤细胞由于加速生长而伴随着肿瘤微环境中的代谢应激(Payne,2022)。缺氧和营养供应不足会引发代谢应激,使肿瘤细胞重新编程为适应性机制。肿瘤细胞可以启动细胞适应性,重新调整其代谢表型以应对这些代谢压力(Jin and White,2007)。针对这些细胞适应性可能为抗肿瘤策略提供潜在的方法。为了应对各种细胞和代谢压力,激活转录因子 4(ATF4)会升高并作为调节器促进细胞适应生存(Wortel et al.,2017)。在癌症中,ATF4 已被确定为应激诱导的转录因子,并发现在一系列肿瘤中频繁上调。值得注意的是,已检测到 ATF4 在一些缺氧和营养不良的肿瘤区域高表达(Ye and Koumenis,2009)。 ATF4作为转录调控因子,广泛参与肿瘤中氨基酸代谢、自噬、氧化还原稳态和内质网应激的调控(图1、2)。本文全面总结了ATF4在肿瘤中的多种作用,并探讨了以ATF4为靶点的抗肿瘤策略的临床意义(表1)。
在某些情况下,突变致癌基因的小分子抑制剂的鉴定导致了显著的肿瘤反应。尽管取得了这些成功,但许多癌症并不含有可用药的致癌基因突变,单一药物疗法很少导致肿瘤完全消退。为了系统地鉴定出其表达对于癌细胞系亚群的增殖和/或存活必不可少的基因,我们和其他人开发了基因组规模的方法,在数百种癌细胞系中进行功能丧失[RNA干扰(RNAi)和CRISPR-Cas9]筛选,以鉴定出特定环境下的必需基因(1-7)。这些努力已鉴定出WRN是微卫星不稳定癌症中的合成致死靶点,PRMT5是MTAP缺失肿瘤中的必需基因,以及透明细胞卵巢癌中的选择性EGLN1依赖性(8-12)。这些研究大多侧重于鉴定特定环境下细胞适应性所需的单个基因。然而,其他研究已经利用这些癌细胞系的基因依赖性模式来揭示基因
我们使用国家SARS-COV-2遗传监测数据确定了BA.1和BA.2(1月1日至2022年1月1日)和BA.5感染(2022年1月1日,2022年1月1日)和BA.5感染的占优势周期(超过90%)。随后,我们计算了每个间隔中每一个间隔中的相对风险(RR)的相对风险(RR),该个体在每个BA.1和BA.2中都有第一次感染的个体,与个体也接种了疫苗,但没有任何先前记录的感染。再感染定义为在同一个人中的两个阳性测试,至少相隔90天。我们发现RR从BA.1或BA.2感染后3个月至8个月之间从0·06左右增加到0·35左右(图B,附录P 12)。的确,RR最初会迅速增加,然后更慢,稳定在0·37左右。
1 土耳其尼代奥梅尔·哈利斯德米尔大学农业科学与技术学院农业遗传工程系,2 巴基斯坦拉合尔旁遮普大学分子生物学卓越中心,3 福建农林大学(FAFU)农学院豆科作物遗传与系统生物学中心/油料作物研究所,作物遗传、育种与综合利用教育部重点实验室,福州,4 巴基斯坦费萨拉巴德农业大学农学院植物病理学系,5 澳大利亚西澳大利亚州默多克默多克大学作物与食品创新中心国家农业生物技术中心,6 印度海得拉巴国际半干旱热带作物研究所(ICRISAT)基因组学与系统生物学卓越中心
糖皮质激素是由肾上腺皮质或肾间组织细胞产生的脊椎动物类固醇激素,在不断变化且偶尔有压力的环境条件下动态地发挥作用以维持体内平衡。它们通过结合并激活核受体转录因子,即糖皮质激素和盐皮质激素受体(分别为 MR 和 GR)来实现这一目的。由于 GR 对内源性糖皮质激素(皮质醇或皮质酮)的亲和力较低,因此主要负责传递昼夜节律和超昼夜糖皮质激素振荡传递的动态信号以及对急性应激产生的瞬态脉冲。这些动态是应激反应的重要决定因素,在系统层面上,它们是由下丘脑-垂体-肾上腺/肾间轴的前馈和反馈信号产生的。在接收细胞内,GR 信号动力学由 GR 靶基因和负反馈调节因子 fkpb5 控制。慢性压力可能通过不完善的生理适应改变信号传导动力学,从而改变系统和/或细胞的设定点,导致皮质醇水平长期升高和异质负荷增加,从而损害健康并促进疾病的发展。当这种情况发生在早期发育过程中时,它可以“编程”压力系统的反应性,并对异质负荷和疾病易感性产生持续影响。一个重要的问题是参与这种编程的糖皮质激素反应基因调控网络。最近的研究表明,klf9 是一种普遍表达的 GR 靶基因,它编码一种对代谢可塑性和神经元分化很重要的 Krüppel 样转录因子,是影响细胞糖皮质激素反应的 GR 信号的前馈调节器,这表明它可能是该调控网络中的一个关键节点。