使用专为现实的能源产生投影而设计的复杂计算器,这些预测是所有潜在因素,包括现场环境条件,面板类型,间距配置和加热系数。每个太阳能电池板类型具有不同的能力变化。这些能力还取决于将它们放置在何处以及面板本身的物理组成。可行性研究不一定需要精确的计算,而是可以准确地说明现实的生产能力。
随着木材废物的回收越来越重要,由于甲醛的释放和其他10种对人类健康和环境产生关键影响的化学物质的释放,含有9种尿素甲醛树脂的木材产品引起了人们的关注。在这项研究中,在不同的12个条件(温度/压力,蒸汽比)下研究了法国家具行业的11种木废物水解。使用FTIR光谱仪和稀释系统测量甲醛和氨发射13的原始方法在这项研究中成功应用了14。讨论了操作条件对甲醛和释放氨的影响15。还引入了一种数学模型,以模拟木材废水中氨和16甲醛发射的行为。17
摘要:医院内的医疗活动导致抗生素的大量消耗,从而导致抗生素残留物的排泄率很高。当这些抗生素被人体服用时,它们不会被人体完全吸收,通常会与受感染的人类患者的生物废物一起排入环境中。医院的大量用水和医疗机构废水中的药物影响促进了抗生素耐药细菌 (ARB) 和抗生素耐药基因 (ARG) 在环境中的出现和传播。医院废水可能在各种生态系统中双重参与抗生素分子和多重耐药细菌的传播。本综述的目的是通过评估环境(水生环境;河流)中这些医院废水中的抗生素浓度和抗生素耐药细菌的多样性来表征医院废水,以及清点医院废水和环境中存在的细菌和携带抗生素耐药性的细菌。
初级治疗后的水不适合饮酒,必须接受进一步的治疗。这是通过二级或生物治疗完成的。一种常用的方法是允许被污染的水散布在一块大床上的石头和砾石上,以便鼓励需要营养和氧气的不同微生物的生长。在一段时间内建立了快速移动的食物链。例如,细菌从污染的水中消耗有机物;原生动物活在细菌上。此过程涉及以下步骤:
一氧化二氮(N 2 O)从废水处理厂的排放量,具有变暖的潜力为12 298倍,这是CO 2的降低,对降低其碳足迹构成了重大挑战。当前的13个缓解策略着重于限制氮化和反硝化过程中的n 2 o形成14,但忽略了微生物还原机制。这项研究研究了15种增强一氧化二氮还原酶(NOSZ)活性的潜力,以降低N 2 O至N 2。我们假设16个战略氧操作可以通过连续的NOSZ表达17增强n 2 O的破坏,并在具有优质NOSZ功能的微生物中实现NOSZ激活。我们使用宏基因组学和19种元蛋白质组学评估18个微生物群落功能和代谢调节,以阐明间歇性曝气方案对N 2 O排放的影响。20与周期性缺氧暴露的间歇性充气通过增强菌只菌的代谢活性,从而显着降低了N 2 O的排放,并清除21 71%的氮。nosz 22的活性在系统适应氧气调节后增加了4至6.5倍,将23次与没有缺氧相的连续氧氧化循环相比。后者导致24 N 2 O排放量增加,这是由于NOSZ活性抑制的25甲基杆菌的产生,而N 2 O的产生增加,该甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基的排放量增加了。我们的发现,26个战略氧气操纵可以为N 2 O的破坏提供能量,为27种开发下一代废水处理技术奠定了基础,以减轻N 2 O排放。28
1。pormidium。camptonemaplanktothrixOscillas ......................................................................... Tychonema lyngbya 134 6。 pleurocapsa 134 7。 Pseudanaaaaena 135 8。 leptolyngby 135Oscillas .........................................................................Tychonemalyngbya 134 6。pleurocapsa 134 7。Pseudanaaaaena 135 8。leptolyngby 135
从环境和经济角度来看,废水处理一直是大都市的主要问题之一。最常见和最有效的厌氧处理需要花费大量成本。同时,厌氧废水处理允许使用其产品之一沼气作为能量载体来进行该过程。然而,尽管厌氧技术具有许多额外的优点,例如无臭味和可以使用稳定污泥作为肥料,但它的特点是生产率低。通过引入固定微生物群的厌氧生物反应器解决了这个问题。许多国家都在积极推进这一领域的发展,但其成果很难系统化。厌氧废水处理工艺在很大程度上取决于废水的特性和生物反应器的设计,因此要证实该工艺的理论研究,必须通过实验进行验证。通过分析与惰性介质厌氧废水处理过程研究相关的已发表著作,我们可以确定主要的发展领域: - 使用底物和某些类型的微生物; - 在一个或多个厌氧生物反应器中进行该过程; - 使用各种介质; - 研究温度的影响 处理技术中的一个重要领域是通过向废水中添加化合物来改性底物本身,以提高处理质量 [1-3]。
摘要生物聚合物正在为商品和特种化学品的生产增强。微生物能够产生各种各样的生物聚合物,其中一些已经生产,而另一些则需要进一步的特征,甚至可以被发现。本评论文章的重点是生物聚合物,例如多酯(多羟基烷酸酯(PHAS),多糖和蛋白质,由于它们能够为已经建立的基于化石的聚合物提供有吸引力的替代品。此外,这些生物蛋白质也可以作为农业蛋白质的替代品。为了降低生产成本并使废物具有新的资源状态,已建议通过使用开放的混合微生物培养物(MMC)生产有机废物的微生物生物聚合物和副产品。MMC强度和弱点分析表明,在复杂的原料应用方面,该系统可能与生产各种微生物聚合物有关。已经开发出用于将微生物群落定向到某些功能的原始原则,并且对该主题进行的研究仍然非常活跃。在本评论文章中,我们认真研究了过去几十年来发现的微生物富集策略,以使开放MMC的生物聚合物生产成为工业现实。
*联系人:m.pabst@tudelft.nl摘要基于废水的监视已成为监测病原体,抗生素耐药性基因以及测量种群水平暴露于药物和化学物质的强大工具。虽然监视方法通常靶向小分子,DNA或RNA,但废水也包含大量蛋白质。然而,尽管环境蛋白质组学最近取得了进步,但对废水中蛋白质生物标志物的大规模监测仍然远非常规。分析原始废水由于有机和无机物质,微生物,细胞碎片和各种化学污染物的异质混合物而提出了挑战。为了克服这些障碍,我们开发了一种废水元蛋白质组学方法,包括有效的蛋白质提取和优化的数据处理管道。管道利用从头测序来自定义大型公共序列数据库,以实现全面的元蛋白质组学覆盖范围。使用这种方法,我们分析了从两个城市地点收集的三个月内收集的废水样品。这揭示了一个核心微生物组,其中包括大量微生物,肠道细菌和潜在的机会病原体。此外,我们确定了近200种人类蛋白质,包括有前途的人口水平的健康指标,例如免疫球蛋白,泌尿瘤蛋白和与癌症相关的蛋白质。废水流是化学物质,有机化合物,微生物和生物分子(例如DNA和蛋白质)的复杂集合,其中很大一部分来自人类活动。关键词:荟萃蛋白质组学,废水,基于废水的流行病学,生物标志物,肠道微生物在全球介绍,每年生产约380万亿升的废水,并且随着世界人口的稳步增长,在未来50年中估计它将在未来50年中估计几乎是两倍。对微生物病原体,病毒和物质(例如药物,农药和压力和饮食的生物标志物)的废水分析已成为常规实践。Cristian G. Daughton在2001年2 - 4年被称为基于废水的流行病学(WBE)。今天,WBE包括各种生物学生物标志物,以评估人群5级的健康状况。基于废水的流行病学(WBE)已被证明可有效识别和监测流行病暴发。 ,例如,在1980年代,芬兰和以色列的废水监视提供了对脊髓灰质炎病毒传播6 7的见解。 此外,在冠状病毒大流行期间,各种研究小组和政府建立了COVID-19-19监视计划8 9 10。 这个知情的政府机构和公众关于SARS-COV-2 11、12的传播。 此外,某些细菌的存在还可以告知抗菌耐药性和各种疾病的传播13-17 18 19。 除了匿名的优势外,废水的收集相对便宜,并且可以适用于较大的人口规模。 对小分子(例如药物)的检测采用色谱分离,并结合了质谱20。基于废水的流行病学(WBE)已被证明可有效识别和监测流行病暴发。,例如,在1980年代,芬兰和以色列的废水监视提供了对脊髓灰质炎病毒传播6 7的见解。此外,在冠状病毒大流行期间,各种研究小组和政府建立了COVID-19-19监视计划8 9 10。这个知情的政府机构和公众关于SARS-COV-2 11、12的传播。此外,某些细菌的存在还可以告知抗菌耐药性和各种疾病的传播13-17 18 19。除了匿名的优势外,废水的收集相对便宜,并且可以适用于较大的人口规模。对小分子(例如药物)的检测采用色谱分离,并结合了质谱20。对病毒,微生物或抗菌耐药基因的分析通常采用靶向方法,例如各种基于核酸的聚合酶链反应方法21-26。最近,使用下一代测序方法的非靶向方法变得更加负担得起,并且在研究水和废水环境方面越来越流行24,27-30。
摘要 水中新兴污染物的增多对科学界和水处理利益相关者提出了挑战,要求他们设计出简单、实用、廉价、有效且环保的修复技术。新兴污染物包括抗生素、激素、非法药物、内分泌干扰物、化妆品、个人护理产品、杀虫剂、表面活性剂、工业产品、微塑料、纳米颗粒和纳米材料。去除这些污染物并不容易,因为传统的废水处理系统并非为处理新兴污染物而设计的,而且污染物通常以痕量形式存在于复杂的有机矿物混合物中。在这里,我们回顾了去除废水中新兴污染物的先进处理方法,重点关注使用非常规吸附剂(如环糊精聚合物、金属有机骨架、分子印迹聚合物、壳聚糖和纳米纤维素)的吸附导向工艺。我们描述了用于降解和去除新兴污染物的生物技术。然后,我们提出高级氧化过程由于其简单性和效率而作为最有前景的策略。