摘要 本研究使用可计算一般均衡模型,以性别为重点,研究坦桑尼亚新冠疫情可能产生的经济影响。该研究主要依赖官方数据来模拟新冠疫情对经济部门、性别劳动力市场和整个经济的短期影响。分析针对不同的社会经济群体——特别是全国范围内、性别和农村/城市地区——进行,以确定受影响最严重和最脆弱的劳动力类别。与非疫情时期相比,新冠疫情引发的冲击导致实际国内生产总值 (GDP) 下降 5.4%。疫情降低了税收和费用收入,导致财政赤字恶化。无论是农村还是城市,女性劳动力的工资率下降幅度都大于男性劳动力。由于女性的工资率通常低于男性,因此新冠疫情对农村和城市女性的负面影响大致相同,对男性劳动力的需求下降幅度大于对女性的需求。此外,许多女性在出口导向型行业工作,这些行业的产出和出口需求急剧下降。关键词:COVID-19、可计算一般均衡模型、性别、坦桑尼亚 JEL 代码:I15、C68、J16、O55
环境与生物物种相关,无论大小如何。不管知道环境变化会对所有物种的生活方式产生不利影响,人类都会通过从人工来源中散发出有害的气体来污染环境。人类正在迅速发明并发现出于各种目的的新技术。但是,大多数技术会散发有害和有毒的温室气体(GHG),这些气体(GHG)限制了地球温度并引起全球变暖。因此,由于温室气体的快速排放和环境中的浓度,全球变暖持续了,其影响会改变气候系统并损害沿海和海洋生态系统。此外,快速的全球变暖和温室气体排放量通过工业区域周围的酸雨引起海水和森林生态系统的酸化,损害了海洋生态系统。结果,沿海和海洋生态系统中对温度敏感的物种通常日常消失。另一方面,尽管知道森林地区的重要性,但我们不加选择地砍伐树木并破坏了森林地区的各种目的。因此,环境中纯氧的缺乏正在显着增加,我们周围的大气变得更加温暖和污染。根据环境科学家的说法,如果情况继续进行,则数千种对温度敏感的物种可能灭绝,导致到当前世纪末的生态失衡。本书由十个章节组成,如下所示:本书的主要目的是通过减轻潜在的影响来研究沿海和海洋生态系统的快速全球变暖和温室气体排放对沿海和海洋生态系统的潜在影响。
摘要 研究:AI 社会认知评估与建模。评估 LLM 中的心智理论及其在心理学中的应用 NLP:LLM IFT、表征学习(对比和三重态损失)、语义聚类、总结 DL:Transformers、MoE、EncDec、RNNs、DPO、LoRA 工具:Python、Pytorch、Deepspeed、AWS Sagemaker、hydra、SQL 管理:建立 ML 团队、职能、策略和 OKR、招聘和指导科学家和实习生以及建立数据和注释合作伙伴关系。
为了实现气候目标,未来的能源系统必须严重依赖风能和光伏 (PV) 等可变可再生能源 (VRES)。随着 VRES 份额的增加,灵活性以及不同灵活性选项的智能相互作用等主题变得越来越重要。分析灵活性选项和增强未来能源系统设计的一种方法是使用能源系统建模工具。尽管存在各种可公开访问的模型,但并没有明确的评估来评估这些工具中如何体现灵活性。为了弥补这一差距,本文提取了灵活性表示的关键因素,并引入了灵活性和影响因素的新分类。为了评估当前的建模状况,我们向开放能源建模工具的开发人员发送了一份调查问卷,并使用新推出的开放 ESM 灵活性评估工具 (OpFEl) 进行分析,这是一种开源评估算法,用于评估工具中不同灵活性选项的表示。结果显示,各种不同的工具涵盖了灵活性的大多数方面。可以看出,出现了包括部门耦合元素的趋势。然而,当前模型中仍未充分体现储能和网络类型灵活性以及涉及系统运行的方面,应更详细地纳入其中。没有一个模型能够高度涵盖所有类别的灵活性选项,但通过软耦合将不同模型组合起来可以作为整体灵活性评估的基础。这反过来又可以基于 VRES 对能源系统进行详细评估。
世纪,在量子级别上开发有效的工具是相当多的,以提高数据的确定性和互操作性。量子计算机以量子力学为基本的原理,即使我们正处于开发的开始,仍然有望带来惊喜。Quantum计算机是唯一可以实现指数加速经典compoter的计算模型。量子计算机当前面临的主要挑战包括增加或减少给定系统的量子数量,同时管理以保留量置的属性和量子系统的纠缠状态,以通过适当的量子算法执行数据操作。在本文中,我们将概述量子计算机,将描述加密的演变以及与量子计算机的计算性能,效率和预测性建模有关的理论。原型和量子模拟算法将提出改善新量子宇宙的寿命。
职业应用疲劳以及许多其他人类绩效因素,影响工人的健康状况,从而产生了生产质量和效率。采用行业5.0观点,我们建议将人类绩效模型整合到更广泛的工业系统模型中可以提高建模准确性并带来卓越的成果。将我们的工人疲劳模型整合为其工业系统建筑师模型的一部分,使领先的飞机制造商Airbus可以更准确地预测系统的性能,这是劳动力妆容的函数,这可能是人类工人和机器人的组合,或者是经验丰富且经验丰富且经验丰富且经验丰富的工人的组合。我们的方法证明了将人类绩效模型包括在商店地板上引入机器人的重要性和价值,可用于在工业系统模型中包括人类绩效的各个方面,以满足特定的任务要求或不同级别的自动化。
尽管在日常任务中对弱势群体(例如,老年人,儿童和残疾人)的辅助技术有很大的需求,但对高级AID辅助解决方案的研究确实满足了他们的各种需求,这仍然很少。传统的人机互动任务通常需要机器来简单地帮助您对人类能力和感觉的细微差别,例如他们进行实践和学习的机会,自我改善感和自尊心。解决这一差距时,我们定义了一个关键而新颖的挑战智能帮助,旨在为各种残疾人的人提供积极主动而自适应的支持,并在各种任务和环境中提供动态目标。为了确定这一挑战,我们利用AI2- [32]来构建一个新的互动3D实体家庭环境,以完成智能帮助任务。我们采用了一个创新的对手建模模块,该模块对主要代理的能力和目标有细微的理解,以优化辅助代理人的帮助政策。严格的实验验证了我们的模型组件的功效,并显示了我们整体方法与已建立基线的优越性。我们的发现说明了AI所辅助机器人在改善弱势群体的福祉方面的潜力。
基于能量的模型 (EBM) 因其在似然建模中的通用性和简单性而具有吸引力,但传统上很难训练。我们介绍了在连续神经网络上扩展基于 MCMC 的 EBM 训练的技术,并展示了它在 ImageNet32x32、ImageNet128x128、CIFAR-10 和机器人手轨迹的高维数据域上的成功,获得了比其他似然模型更好的样本,接近当代 GAN 方法的性能,同时覆盖了数据的所有模式。我们重点介绍了隐式生成的一些独特功能,例如组合性和损坏图像重建和修复。最后,我们表明 EBM 是适用于各种任务的有用模型,实现了最先进的分布外分类、对抗鲁棒分类、最先进的持续在线类学习和连贯的长期预测轨迹推出。
摘要。在基于FEM的EEG和MEG源分析中,已经提出了减法方法来模拟神经活动产生的传感器测量。 尽管这种方法是一个严格的基础并产生准确的结果,但其主要缺点是它在实际应用中的价格昂贵。 为了克服这一点,我们开发了一种新方法,称为局部减法方法。 这种方法旨在保留减法方法的数学基础,同时也导致右侧稀疏的右侧,使其有效地计算。 我们通过将截止值引入减法来实现这一目标,从而将其影响限制在来源的附近。 我们在存在分析解决方案的多层球体模型中执行验证。 在那里,我们证明了局部减法方法比减法方法要高得多。 此外,我们发现,对于EEG远期问题,与减法方法相比,局部减法方法不太依赖于FEM网格的全局结构。 此外,我们还展示了局部减法方法,在许多情况下,其他研究的方法就准确性而言。 对于MEG向前问题,我们显示了局部减法方法和减法方法,以产生高度准确的体积电流近似值。在基于FEM的EEG和MEG源分析中,已经提出了减法方法来模拟神经活动产生的传感器测量。尽管这种方法是一个严格的基础并产生准确的结果,但其主要缺点是它在实际应用中的价格昂贵。为了克服这一点,我们开发了一种新方法,称为局部减法方法。这种方法旨在保留减法方法的数学基础,同时也导致右侧稀疏的右侧,使其有效地计算。我们通过将截止值引入减法来实现这一目标,从而将其影响限制在来源的附近。我们在存在分析解决方案的多层球体模型中执行验证。在那里,我们证明了局部减法方法比减法方法要高得多。此外,我们发现,对于EEG远期问题,与减法方法相比,局部减法方法不太依赖于FEM网格的全局结构。此外,我们还展示了局部减法方法,在许多情况下,其他研究的方法就准确性而言。对于MEG向前问题,我们显示了局部减法方法和减法方法,以产生高度准确的体积电流近似值。因此,局部减法方法将减法方法的计算成本降低到使其可在实际应用中使用的程度,而无需牺牲较严格性和准确性,以下减法方法已知。
低温电子显微镜(cryo-EM)已成为确定大型蛋白质复合物和分子组装体结构的主要实验技术,2017 年的诺贝尔奖就是明证。尽管低温电子显微镜已得到极大改进,可以生成包含大分子详细结构信息的高分辨率三维(3D)图谱,但利用这些数据自动构建结构模型的计算方法却远远落后。传统的低温电子显微镜模型构建方法是基于模板的同源性建模。当数据库中找不到模板模型时,手动从头建模非常耗时。近年来,使用机器学习(ML)和深度学习(DL)的从头低温电子显微镜建模已成为大分子结构建模中表现最好的方法之一。基于深度学习的从头低温电子显微镜建模是人工智能的重要应用,其成果令人印象深刻,对下一代分子生物医学具有巨大潜力。因此,我们系统地回顾了具有代表性的基于 ML/DL 的从头低温电子显微镜建模方法。并从实践和方法论的角度讨论了它们的意义。我们还简要介绍了低温电子显微镜数据处理工作流程的背景。总体而言,本综述为从头分子结构建模的人工智能 (AI) 现代研究以及这一新兴领域的未来方向提供了入门指南。
