低温电子显微镜(cryo-EM)已成为确定大型蛋白质复合物和分子组装体结构的主要实验技术,2017 年的诺贝尔奖就是明证。尽管低温电子显微镜已得到极大改进,可以生成包含大分子详细结构信息的高分辨率三维(3D)图谱,但利用这些数据自动构建结构模型的计算方法却远远落后。传统的低温电子显微镜模型构建方法是基于模板的同源性建模。当数据库中找不到模板模型时,手动从头建模非常耗时。近年来,使用机器学习(ML)和深度学习(DL)的从头低温电子显微镜建模已成为大分子结构建模中表现最好的方法之一。基于深度学习的从头低温电子显微镜建模是人工智能的重要应用,其成果令人印象深刻,对下一代分子生物医学具有巨大潜力。因此,我们系统地回顾了具有代表性的基于 ML/DL 的从头低温电子显微镜建模方法。并从实践和方法论的角度讨论了它们的意义。我们还简要介绍了低温电子显微镜数据处理工作流程的背景。总体而言,本综述为从头分子结构建模的人工智能 (AI) 现代研究以及这一新兴领域的未来方向提供了入门指南。