数字图像的处理不断获得数量和相关性,对数据存储,传输和处理能力的需求不断增加。传输电子显微镜仪器的最新进展,尤其是在检测器技术中,已经推动了各种方式的数据生产。例如,如今,人们可以通过利用直接电子检测器[1]来想象最多生成200tb/hr,需要智能方法来提取科学有意义的信息。尽管在人工智能(AI)和机器学习(ML)方法的帮助下,显微镜数据解释取得了很多进展[1,2],但与增长的数据解释数据量相关的挑战仍然丰富。预计这将进一步加剧原位 /操作测量的气象升高以及数据挖掘,分析和其他计算需求的相关挑战。
数字图像的处理不断获得数量和相关性,对数据存储,传输和处理能力的需求不断增加。传输电子显微镜仪器的最新进展,尤其是在检测器技术中,已经推动了各种方式的数据生产。例如,如今,人们可以通过利用直接电子检测器[1]来想象最多生成200tb/hr,需要智能方法来提取科学有意义的信息。尽管在人工智能(AI)和机器学习(ML)方法的帮助下,显微镜数据解释取得了很多进展[1,2],但与增长的数据解释数据量相关的挑战仍然丰富。预计这将进一步加剧原位 /操作测量的气象升高以及数据挖掘,分析和其他计算需求的相关挑战。
•在1932年,西门子和Halske的恩斯特·拉布克(Ernst Lubcke)从原型电子显微镜中构建和获得图像,应用了Rudenberg专利应用中描述的概念。五年后(1937年),该公司资助了恩斯特·鲁斯卡(Ernst Ruska)和博多·冯·博里斯(Bodo von Borries)的工作,并雇用了赫尔穆特·鲁斯卡(Helmut Ruska)(恩斯特的兄弟)为显微镜开发应用程序,尤其是使用生物学标本。同样在1937年,曼弗雷德·冯·阿登(Manfred Von Ardenne)率先扫描电子显微镜。第一个实用的电子显微镜由Eli Franklin Burton和学生Cecil Hall,James Hillier和Albert Prebus于1938年在多伦多大学建造。西门子在1939年产生了第一个商业传输电子显微镜(TEM)。尽管当代电子显微镜能够进行两百万驱动器的放大倍数,但作为科学仪器,它们仍然基于Ruska的原型。
液态液相分离(LLP)是在各种分子溶液中观察到的一种无处不在的分解现象,包括在聚合物和蛋白质溶液中。解散溶液会导致凝结,相分离的液滴,这些液滴表现出由瞬态分子间相互作用驱动的一系列类似液体类似的特性。了解这些冷凝物中的组织对于破译其材料特性和功能至关重要。这项研究使用改良的低温电子显微镜(Cryo-EM)方法探索了凝结物样品中不同的纳米级网络和界面。该方法涉及在电子显微镜网格上启动冷凝物形成,以控制相分离过程中的液滴大小和阶段。通过成像三个不同类别的冷凝物来证明该方法的多功能性。我们使用冷冻电子层析成像进一步研究了凝结物结构,该层造影提供3D重建,揭开多孔内部结构,独特的核心壳形态和纳米蛋白质冷凝物组织内的不均匀性。与干态透射电子显微镜的比较强调了保留冷凝水的水合结构以进行准确的结构分析的重要性。,我们通过进行粘度测量值支持蛋白质冷凝物的内部结构与其氨基酸序列和材料特性相关联,这些粘度测量支持更多的粘性冷凝水表现出较密集的内部组件。我们的发现有助于对纳米级冷凝物结构及其材料特性的全面理解。我们在这里的方法提供了一种多功能工具,用于探索各种相分离的系统及其纳米级结构,以供将来的研究。
光学成像系统(显微镜、望远镜或照相机)的分辨率可能受到镜头缺陷或错位(смещение)等因素的限制。然而,由于衍射的物理特性,任何光学系统的分辨率都有一个主要限制。分辨率性能达到仪器理论极限的光学系统被称为衍射极限。
该角色的目的是通过运用其知识和专业知识来支持生物科学学院的各种研究活动,为显微镜生物科学平台的所有EM使用者提供专业服务。该设施位于生理学,开发与神经科学系,提供高级成像服务,目前为大学和外部商业用户提供100多个研究小组。目前,该中心具有带有相关样品准备设备的FEI Verios 460 SEM和Tecnai G2 TEM。该角色将提供基本的支持,以改善我们最先进的EM设施的研究吞吐量,该角色持有人将通过帮助常规的湿务实验室和仪器维护,在设施的日常运行中与EM团队紧密合作,通过PPM在线预订系统实施和管理安全程序,从而确保安全过程来维持安全的工作环境。此外,角色持有人将执行各种样本准备协议,帮助培训仪器上的新用户和现有用户,并在确定最佳实验设计和适当的方法方面发挥越来越活跃的作用,具体取决于研究项目的要求,并帮助跟踪个人研究项目的进度。
•扫描电子显微镜是使用精细的能量电子束来观察和分析散装样品的表面微观结构的仪器。•电子光系统用于形成电子探针,该探针可以以栅格模式在样品表面扫描。•通过该梁与样品的相互作用产生了各种信号。可以通过适当检测器的应用来收集或分析这些信号。•对于成像,可以组装在栅格图案中每个位置上获得的信号振幅以形成图像。
在低电子能量的扫描电子显微镜(SEM)中,损伤诱导的电压改变(DIVA)对比度机制已作为一种快速且方便的方法,可以直接可视化硝酸盐(GAN)中能量离子辐照引起的电阻率的增加。在覆盖有金属面膜的蓝宝石上外上植物生长的gan层,并在600 keV能量下受到He 2 +辐射的约束。在不同的电子束电流和扫描速度下,在SEM上成像样品横截面处的二维损伤曲线。通过电子束照射沉积的累积电荷的增加观察到了图像对比的逐渐发展,以最终达到与GAN离子辐射部分的局部电阻率相关的对比度的饱和水平。提出的方法允许人们直接可视化离子辐照区域,即使是由于离子损伤导致的最低电阻率变化,即用离子辐照后,甘恩的所有级别的绝缘层堆积。考虑到不可能将湿化学的蚀刻技术应用于GAN,它使提出的技术成为基于GAN-基于GAN-基于电子设备的高度抗性和绝缘区域的可视化方法。提出的作品的主要目的是更深入地了解GAN中的Diva对比,特别强调讨论栅格速度和电子束电流的作用,即电荷堆积的细节样品表面。