自 1796 年开发出第一种天花疫苗以来,疫苗在减轻疾病负担以及降低死亡率和发病率方面的功效已多次得到证实。然而,尽管疫苗的发现、开发和制造取得了显著进展,但这仍然是一个具有挑战性的过程,需要深入了解每种病原体和相关的蛋白质靶点。低温电子显微镜是疫苗开发中的一种强大工具,可以更好地设计抗原,通过分析抗体-表位复合物来定位表位,并了解疫苗效力的分子基础。这种方法被制药公司广泛采用,以降低发现和开发流程以及制造项目的风险。我们设想低温电子显微镜将成为一种不可或缺的工具,它将加快上市时间、提高成功率并降低疫苗开发成本,从而在不久的将来取得更多临床成功。在这张海报中,我们报告了低温电子显微镜在疫苗发现、开发和制造不同领域的一些应用,重点介绍了该行业的成功案例和趋势。
Neel 研究所拥有 Jeol NEOARM,它在光谱学、电场和磁场测量方面提供了卓越的可能性,可以与不同的原位选项相结合(加热、冷却和电偏置已经可用),实验室希望发展其在光谱学以及原位/操作分析(催化、生长、液体介质、电池运行等)方面的活动。NEOARM 配备了冷 FEG,能够在 60 至 200 kV 的电压下运行,配备了 STEM 像差校正器、多个 STEM 探测器,包括一个用于差分相衬的 8 段探测器、广角 EDX 探测器、用于电子能量损失光谱的 GIF 连续光谱仪、用于电子全息的双棱镜、Gatan Oneview 相机、使用 Medipix 3 技术的直接电子探测器、电子束感应电流以及电子束进动。提供多个样品架,可进行断层扫描、倾斜旋转、在氮气和氦气(正在开发中)温度下冷却,以及加热和原位电偏置。
液态液相分离(LLP)是在各种分子溶液中观察到的一种无处不在的分解现象,包括在聚合物和蛋白质溶液中。解散溶液会导致凝结,相分离的液滴,这些液滴表现出由瞬态分子间相互作用驱动的一系列类似液体类似的特性。了解这些冷凝物中的组织对于破译其材料特性和功能至关重要。这项研究使用改良的低温电子显微镜(Cryo-EM)方法探索了凝结物样品中不同的纳米级网络和界面。该方法涉及在电子显微镜网格上启动冷凝物形成,以控制相分离过程中的液滴大小和阶段。通过成像三个不同类别的冷凝物来证明该方法的多功能性。我们使用冷冻电子层析成像进一步研究了凝结物结构,该层造影提供3D重建,揭开多孔内部结构,独特的核心壳形态和纳米蛋白质冷凝物组织内的不均匀性。与干态透射电子显微镜的比较强调了保留冷凝水的水合结构以进行准确的结构分析的重要性。,我们通过进行粘度测量值支持蛋白质冷凝物的内部结构与其氨基酸序列和材料特性相关联,这些粘度测量支持更多的粘性冷凝水表现出较密集的内部组件。我们的发现有助于对纳米级冷凝物结构及其材料特性的全面理解。我们在这里的方法提供了一种多功能工具,用于探索各种相分离的系统及其纳米级结构,以供将来的研究。
b'Abstract:模块化聚酮化合物合酶(PKS)是巨型组装线,产生了令人印象深刻的生物活性化合物。然而,我们对这些巨质的结构动力学的理解,特别是酰基载体蛋白(ACP)结合的构建块的递送到酮类合酶(KS)结构域的催化位点的构建块仍然受到严重限制。使用多管结构方法,我们报告了在根瘤菌毒素PK的链分支模块中C C键形成后域间相互作用的详细信息。基于机制的工程模块的交联,使用作为迈克尔受体的合成底物底座。交联蛋白使我们能够通过低温电子显微镜(Cryo-EM)在C键形成时鉴定出二聚体蛋白复合物的不对称态。AlphaFold2预测也指示了两个ACP结合位点的可能性,其中一个用于底物加载。NMR光谱表明,在溶液中形成了瞬态复合物,独立于接头结构域,并且具有独立域的光化学交联/质谱法使我们能够查明域间相互作用位点。在C C键形成后捕获的分支PK模块中的结构见解可以更好地理解域动力学,并为模块化装配线的合理设计提供了宝贵的信息。
最佳环氧树脂嵌入对于从大组织样品中获得一致的串行切片至关重要,尤其是对于跨度> 1 mm 2的块面而言。我们报告了一种使用块面的块硬度测量值来量化树脂固化中不均匀性的方法。我们确定导致不均匀固化的条件以及监测用于体积电子显微镜的广泛常见环氧树脂的块硬度的程序。我们还通过使用样品安装的力传感器来量化超薄分段期间的横向和分段切割力来评估切割的可重复性和均匀性。我们的发现表明需要筛选和优化树脂制剂以在截面厚度方面达到最佳重复性。最后,我们探索了在嵌入环氧树脂的明胶基质中不规则形状的组织样品的封装,以产生更多均匀的切片。
“电子显微镜视角下创新材料高级表征”初级教授职位 Institut Neel CNRS,法国格勒诺布尔 CNRS 预计将在 2024 年上半年开放一个初级教授职位,在 4 个最近获得最先进透射电子显微镜 (TEM) 的实验室之间的竞争中,包括 Institut Néel。因此,Institut Néel 正在寻找一位优秀且积极主动的候选人来加强对 TEM 高级表征的研究活动。Institut Neel 拥有一个 Jeol NEOARM,它在光谱、电场和磁场测量方面提供了特殊的可能性,可以与不同的原位选项相结合(加热、冷却和电偏置已经可用),实验室希望发展其在光谱方面的活动,同时也发展原位/原位分析(催化、生长、液体介质、电池运行等)。 NEOARM 配备了冷 FEG,可在 60 至 200 kV 的电压下运行,并配备了 STEM 像差校正器、多个 STEM 探测器(包括用于差分相衬的 8 段探测器、广角 EDX 探测器、用于电子能量损失光谱的 GIF 连续光谱仪、用于电子全息照相的双棱镜、Gatan Oneview 相机、使用 Medipix 3 技术的直接电子探测器、电子束感应电流以及电子束进动。提供多个样品架,可进行断层扫描、倾斜旋转、在氮气和氦气(正在开发中)温度下冷却,以及加热和原位电偏置。
沉积岩被广泛用作地质储层,并用作地理能源系统的宿主岩石。沉积岩的热性能,例如热有导度,热扩散率和体积特异性热量,在适合这些应用中起着至关重要的作用。这项研究使用扫描电子显微镜(SEM)分析研究了30种不同的砂岩样品的热性能。比较具有不同热性能的岩石样品的SEM图像,以分析纹理特性如何影响热性能。我们的结果表明,沉积岩的热性能高度取决于其质地。特别是,我们发现具有较高粗糙度的岩石倾向于表现出较低的导热率和热扩散率。毛孔和裂缝的存在影响了砂岩岩石检查的热特性。从图像中提取的平均表面粗糙度显示出强大的负电导率和扩散率(分别为−0.59和-0.6),而实验得出的是,由于其复合效应对热传递的效果可能会导致孔,裂纹和空隙区域的阴性负相关(-0.18和 - 0.17)的显而易见的负相关性(-0.18和 - 0.17)。空隙的大小,形状和分布会影响传热,互连的空隙为热流提供网络,而较小的空隙更有效地捕获热量。沉积岩的质地在确定其热性能中起着至关重要的作用。[doi:10.1115/1.4064030]该知识可用于优化对应用中砂岩储层的潜力的理解,例如地热能或热能存储。
我们使用数值模拟来演示与 Cs 校正 STEM 成像相当的分辨率,方法是使用调制器在未校正的仪器上执行 CGI(图1b-g)。我们模拟了 MoS 2 扭曲双层的 CGI 实验(图1b),其中两个 MoS 2 单层以 7° 角堆叠在一起。这样的样本提供了几乎连续的原子间距离范围,并且已被证明可用于估计成像技术的分辨率 [37]。我们假设一台 300 kV 显微镜,其 Cs = 2.7mm,在 Scherzer 条件下,需要使用小孔径(𝛼= 7.3 𝑚𝑟𝑎𝑑 ),将分辨率限制为 1.63 Å,如图所示。1d。相反,CGI 允许使用更大的数值孔径,从而实现更高的分辨率。在图中。1f-g 我们展示了使用 2𝛼 会聚半角计算的 CGI 重建,尽管存在像差,但仍提供 0.64 Å 的分辨率。该值与具有相同半会聚角的无像差成像系统的分辨率相当。事实上,只要能够预测照明模式,就可以使用任意大的半会聚角。准确的探测预测对于未来的实验实现至关重要,如补充材料 [38] 中所述。一个限制因素是相干性 [38],其阻尼包络定义了传输到结构化照明的最高频率 [39,40]。
课程描述 本课程专为具有材料科学与工程、物理学、地球科学、化学、生命科学或相关领域背景的学生而设计。本课程专门为以下学生设计:a) 学习 SEM 成像、衍射和光谱学的基本原理;b) 了解电子-样本相互作用、信号产生和检测;c) 正确解释各种类型的图像和相关的 X 射线光谱和衍射图案;d) 掌握适当的技能来解决实际材料的各种图像和微分析问题。本课程的学习成果包括 i) 理解关键概念和基本原理,ii) 正确选择适当的电子束参数(例如电压、电流、探针尺寸和焦深)以研究不同类型的材料(例如导体、半导体、绝缘体或聚合物),以及 iii) 了解如何消除图像、光谱和衍射图案中的伪影。希望学生专注于解决问题的技能,并熟练地利用现代 SEM 来解决具有挑战性的材料研究问题和产品开发问题。课程内容 本课程首先介绍电子束-样品相互作用,以及此类相互作用如何产生不同类型的有用信号,这些信号携带样品特定信息(形态、结构、元素分布等)。然后将广泛讨论影响各种类型电子探针形成的参数(例如高分辨率成像与微分析)。接下来将讨论不同类型的电子和X射线探测器以及如何使用这些探测器形成可解释的图像和/或光谱。在学期的第一部分,重点是理解探针形成和图像解释的基本原理,重点是如何为特定类型的样品选择合适的电子光学参数。在学期的第二部分,我们将讨论通过X射线对异质样品进行定性和定量成分分析、通过电子背散射衍射(EBSD)图案获取晶体材料的结构信息,以及如何使用低电压(低至数十伏)或可变压力SEM对非导电或湿样品进行成像。将讨论双光束 FIB-SEM(电子和聚焦离子束)显微镜和现代 SEM 中的原子分辨率成像。讲座时间:周一/周三下午 12:00-1:15;地点:CVAC 333(和 ASU Online);讲师:Jingyue (Jimmy) Liu 博士(https://isearch.asu.edu/profile/1816322);办公室:PSF 432A;电子邮件:jliu152@asu.edu。
摘要 扫描透射电子显微镜 (STEM) 技术在过去二十年中取得了重大进步。像差校正技术、超高能量分辨率单色仪和最先进的探测器/相机的进步使 STEM 成为从微观到原子尺度研究材料化学和结构的重要工具。这种表征技术对于理解和表征下一代先进材料中铁性材料特性的起源非常有价值。工程材料的许多独特性质,例如铁电性、压电性和铁磁性,都与其原子级组成和结构密切相关。STEM 能够直接观察这些结构特征,从而与宏观特性建立联系。从这个角度来看,我们概述了先进的 STEM 技术在研究铁性材料特性起源中的应用,并讨论了进一步利用 STEM 技术的潜在机会。