仅供研究使用。不可用于诊断程序。如需了解当前认证,请访问 thermofisher.com/certifications © 2023 Thermo Fisher Scientific Inc. 保留所有权利。除非另有说明,所有商标均为 Thermo Fisher Scientific 及其子公司的财产。AN0224-EN-07-2023
近来,生物组织电子显微镜的成像吞吐量空前提高,使对整个大脑等大型组织块的超微结构分析成为可能。然而,对大型生物样本进行均匀、高质量的电子显微镜染色仍然是一项重大挑战。到目前为止,评估电子显微镜的染色质量需要对样本进行端到端的整个染色方案,对于大型样本来说,这可能需要数周甚至数月的时间,这使得此类样本的方案优化效率低下。在这里,我们提出了一种原位延时 X 射线辅助染色程序,它打开了电子显微镜染色的“黑匣子”,可以实时观察单个染色步骤。使用这种新方法,我们测量了浸入不同染色溶液中的大型组织样本中重金属的积累。我们表明,固定组织中测得的锇积累量在经验上服从孵育时间和样本大小之间的二次依赖关系。我们发现,亚铁氰化钾(四氧化锇的经典还原剂)在锇染色后可使组织变得透明,并且组织在四氧化锇溶液中会膨胀,但在还原锇溶液中会收缩。X 射线辅助染色让我们能够了解原位染色动力学,并使我们能够开发出一种扩散-反应-平流模型,该模型可以准确模拟组织中锇的测量积累。这些是朝着计算机染色实验和模拟引导优化大样本染色方案迈出的第一步。因此,X 射线辅助染色将成为开发可靠染色程序的有用工具,用于大样本(例如小鼠、猴子或人类的整个大脑)。
真菌和细菌都生活在各种环境中,它们的相互作用在许多过程中都很重要,包括土壤健康,人类和动物生理以及生物技术应用。很难建立这些微生物之间相互作用的特异性。例如,与互动或反性相互作用相比,由于随机混合而导致的琐碎过程之间的分化。在这里,我们研究了菌丝形成生物膜形成液体培养物中浮游细菌生长共培养的单一形态学特征。也就是说,枯草芽孢杆菌的细菌共同援助因子附着于物种Hericium erinaceus的真菌菌丝。开发并利用了细菌中的细菌方法,可通过遏制在细胞外聚合物物质(EPS)和菌丝体整体细胞外基质(ECM)中连接细菌。由于产生EPS,启动结构似乎是由菌丝表面造成的。 T1-3的平均生物膜面积为3.90(µm 2)±0.72(µm 2),平均百分比覆盖率为18.33(%)±5.52(%)。 由于存在连接单个细菌和菌丝的结构,因此不能排除细菌生物膜成分的共同归因于附着结构的形成。启动结构似乎是由菌丝表面造成的。T1-3的平均生物膜面积为3.90(µm 2)±0.72(µm 2),平均百分比覆盖率为18.33(%)±5.52(%)。由于存在连接单个细菌和菌丝的结构,因此不能排除细菌生物膜成分的共同归因于附着结构的形成。
raav对于基因替代疗法至关重要,将功能基因传递给靶向组织。低电压电子显微镜(LVEM)为有效分析AAV Capsids的结构和质量提供了重要的潜力。基因治疗旨在通过将基因的功能拷贝传递给靶向组织,通常使用诸如AAV之类的病毒矢量来纠正遗传缺陷。这些矢量由封装治疗基因的27 nm直径capsid组成。电子显微镜,包括低温透射电子显微镜(Cryo-TEM),通常用于分析这些病毒颗粒。但是,这些方法通常具有挑战性,需要大型且昂贵的专业设备和条件。
由于其出色的物理,化学和电化学特性,热解碳已成为各种技术应用的有前途的材料[1]。热解碳可以通过在受控条件下在高温和惰性气氛中的受控条件下的聚合物碳前体进行热解。通过调整热解条件,碳原子的杂交以及衍生碳的物理化学特性可以量身定制。尽管一些研究人员试图以原子量规模研究石墨化过程,但全面的理解仍然难以捉摸。透射电子显微镜(TEM)非常适合研究纳米级热处理过程中聚合物薄膜的石墨化[2]。的确,TEM提供了原位分析能力的优势,这些功能可以揭示热解过程中热解碳的纳米结构。但是,聚合物薄膜样品的制备仍然是一个挑战。这项工作介绍了通过两光子聚合物化(2pp)3D打印技术的基于mems的TEM加热芯片(密集溶剂)上悬浮的聚合物薄膜结构的微结构[3]。我们还报告了原位研究的结果,用于追踪热解碳的石墨化。
氧化芳香族底物的酶已在一系列基于细胞的技术中显示出效用,包括活细胞邻近标记 (PL) 和电子显微镜 (EM),但也存在一些缺点,例如需要有毒的 H 2 O 2 。在这里,我们探索了漆酶作为哺乳动物细胞中 PL 和 EM 的一种新型酶类。LaccID 是通过 11 轮定向进化从祖先真菌漆酶产生的,它使用 O 2 而不是有毒的 H 2 O 2 催化多种芳香族底物的单电子氧化,并且对活细胞和固定细胞的表面质膜均表现出活性选择性。我们表明,LaccID 可与基于质谱的蛋白质组学一起使用,以绘制通过抗原特异性 T 细胞受体与肿瘤细胞结合的 T 细胞不断变化的表面组成。此外,我们使用 LaccID 作为可遗传编码的标签,用于在哺乳动物细胞培养物和苍蝇大脑中通过 EM 可视化细胞表面特征。我们的研究为未来基于细胞的 LaccID 应用铺平了道路。
在广泛的一次电子束能量范围内研究了扫描电子显微镜 (SEM) 中的损伤诱导电压变化 (DIVA) 对比度机理,特别强调了超低能量范围。在 10 keV 至 10 eV 的一次电子能量范围内,对用 600 keV He 2 + 离子辐照的 In (0.55) Al (0.45 )P 中的电阻率变化相关的 SEM 成像对比度进行了分析。首次解决了超低能量范围内的样品充电问题及其对 SEM 图像对比度的影响。与基于经典总发射率方法的预期相反,在辐照区域高电阻部分形成的电位导致低于 E 1 能量的一次电子记录信号强度急剧增加,这可以解释为由于样品表面电位充当了一次电子的排斥器而导致的信号饱和。尽管如此,展示电子束能量对电子辐照下绝缘材料表面电位形成影响的实验数据还是首次在超低能范围内给出。
细胞电子显微镜(EM)数据集的抽象自动分割仍然是一个挑战。依靠利益区域(ROI)注释的监督深度学习(DL)方法产生了无法推广到无关数据集的模型。较新的无监督的DL算法需要相关的预训练图像,但是,当前可用的EM数据集的预培训在计算上是昂贵的,对于看不见的生物学环境的价值很小,因为这些数据集很大且同质。为了解决此问题,我们提出了CEM500K,这是一个敏捷的25 GB数据集,为0.5 10 6独特的2D蜂窝EM图像,该图像从近600个三维(3D)和10,000个二维(2D)图像中策划了> 100个无关的成像项目。我们表明,在CEM500K上预先训练的模型学习在生物学上相关且具有有意义图像增强的功能。至关重要的是,我们对这些预训练的模型进行了转移学习,并在六个公开可用和一项新得出的基准细分任务上评估了转移学习,并报告了每个模型的最新结果。我们发布了CEM500K数据集,预先培训的模型和策划管道,用于建立模型和EM社区的进一步扩展。数据和代码可在https://www.ebi.ac.uk/pdbe/emdb/empiar/entry/10592/和https://git.io/jlltz上获得。
摘要:界面结构和化学演变是电池和其他电化学系统安全性、能量密度和寿命的基础。在锂电沉积过程中,可能会出现局部非平衡条件,从而促进异质锂形态的形成,但直接研究这些条件具有挑战性,尤其是在纳米尺度上。在这里,我们绘制了锂电沉积过程中活性铜/电解质界面的化学微环境,并展示了一种新方法——原位冷冻低温电子显微镜 (cryo-EM),用于锁定纽扣电池中出现的结构。我们发现局部离子耗竭与锂晶须有关,但与平面锂无关,我们假设耗竭源于根部生长的晶须在生长界面消耗离子,同时限制离子通过局部电解质的传输。这可能导致危险的锂形态传播,即使在浓电解质中也是如此,因为离子耗竭有利于树枝状晶体的生长。因此,原位冷冻冷冻电镜可以揭示活性电化学界面处的局部微环境,从而能够直接研究能源设备运行过程中出现的特定地点的非平衡条件。
1 Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK 2 Department of Cellular Pathology, Royal Victoria In fi rmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK 3 Department of Pathology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece 4 Electron Microscopy Research Services, Newcastle英国泰恩河上的纽卡斯尔大学5临床科学系马尔默,伊斯特细胞胞吞作用,隆德大学糖尿病中心,伦敦大学,马尔默,瑞典6组织病理学系,皇家哈拉姆郡医院,皇家哈勒姆郡医院,英国皇家郡7 Nuf fird field of coxford and of Coxford and Nhs of Flood and Nhs cox移植,弗里曼医院,纽卡斯尔,泰恩医院NHS基金会信托基金会,纽卡斯尔,英国泰恩河上
