我们提出了一种方法来弥合人类视觉计算模型与视觉障碍 (VI) 临床实践之间的差距。简而言之,我们建议将神经科学和机器学习的进步结合起来,研究 VI 对关键功能能力的影响并改进治疗策略。我们回顾了相关文献,目的是促进充分利用人工神经网络 (ANN) 模型来满足视障人士和视觉康复领域操作人员的需求。我们首先总结了现有的视觉问题类型、关键的功能性视觉相关任务以及当前用于评估两者的方法。其次,我们探索最适合模拟视觉问题的 ANN,并在行为(包括性能和注意力测量)和神经层面预测它们对功能性视觉相关任务的影响。我们提供指导方针,为未来针对受 VI 影响的个体开发和部署 ANN 的临床应用研究提供指导。
职业应用疲劳以及许多其他人类绩效因素,影响工人的健康状况,从而产生了生产质量和效率。采用行业5.0观点,我们建议将人类绩效模型整合到更广泛的工业系统模型中可以提高建模准确性并带来卓越的成果。将我们的工人疲劳模型整合为其工业系统建筑师模型的一部分,使领先的飞机制造商Airbus可以更准确地预测系统的性能,这是劳动力妆容的函数,这可能是人类工人和机器人的组合,或者是经验丰富且经验丰富且经验丰富且经验丰富的工人的组合。我们的方法证明了将人类绩效模型包括在商店地板上引入机器人的重要性和价值,可用于在工业系统模型中包括人类绩效的各个方面,以满足特定的任务要求或不同级别的自动化。
环境设计空间(EDS)是为亚音速飞机设计和评估而设计的建模和仿真环境。将其与其他类似框架区分开来的主要功能之一是其执行飞机性能和尺寸,排气排放和噪音预测的能力。由于多个行业标准工具的集成,这三个要素被无缝执行。自2008年的构想以来,EDS已被用来支持多个研究实体和项目,以评估当前和未来的飞机概念和技术。与该领域的专家小组结合,在多年来对其结果和假设进行了校准和修订。因此,它经历了持续的发展,增强了其能力,不仅可以对传统的管子和翼飞机进行建模,还可以对非常规的配置进行建模。在撰写本文的撰写中,其功能范围超出了标准的单线轴和双线轴发动机,包括齿轮风扇,超高旁路涡轮扇形,开放式转子和部分涡轮推进架构。本文概述了如何使用EDS来支持主要的研究。然后,提出了一种开发和校准发动机和飞机模型以匹配现有开源数据的方法。最后,显示了可用的高级发动机和飞机架构的摘要。结果表明,EDS可以创建与现有系统性能紧密相匹配的模型,以及它具有支持未来飞机设计和技术开发研究的功能。
摘要 电池组既表现出固有的电池间差异,也表现出温度和其他应力因素的时空差异,从而影响电池退化路径的演变。为了解释这些变化和退化或电池扩散的差异,我们提出了一种利用 3 参数非齐次伽马过程对锂离子电池退化进行建模的方法。该方法可预测任何电池架构的容量衰减或故障时间,并使用加速因子调整电池拟合退化数据的分布。在电池组级别,使用并联和串联配置的伽马分布变量组合对电池进行建模。将不同热条件下的容量衰减或故障时间的实际值与预测值进行比较,显示相对误差在 1 – 12% 范围内。我们还提出了一种通过分析样本量对估计不同电池组退化的影响来估计建模扩散和退化路径演变所需的最少电池数量的方法。这种采样策略对于降低设计电池组、电池管理系统和电池热管理系统所需的运行模拟的计算成本特别有用。
I.引言白喉是由核核细菌二甲菌引起的严重感染,可导致毒素导致严重疾病。细菌主要是通过咳嗽或打喷嚏的呼吸液滴传播的,但也可以通过与感染的疮或溃疡接触而传播。那些处于较高风险的人包括生活在同一家庭中的人或经常与受感染者密切接触的人(CDC,2022)。症状通常在感染后2-5天出现,并且严重程度有所不同,包括喉咙痛,嘶哑,厚厚的灰色膜覆盖喉咙和扁桃体,发烧,发冷和疲劳。如果未经治疗,白喉可能会引起并发症,例如呼吸道问题,心脏损伤和神经损伤(Mayo,2023年)。自2022年12月以来,NCDC报告了各个州的多次白喉爆发。到2023年6月30日,有798个确认的案件已从八个州的33个地方政府地区(LGA)报告,其中卡诺(Kano)为多数(782例)。这些病例主要影响2-14岁的儿童,导致确认病例80例死亡(NCDC,2023年)。从2023年6月至2023年8月,尼日利亚的白喉病例显着增加,有5898例可疑病例报告了11个州的59个LGA。仅第34周就看到了五个州的20个LGA的234例可疑病例,其中一个实验室确认的病例(WHO,2023年)。
雷达相机3D对象检测旨在与雷达信号与摄像机图像进行交互,以识别感兴趣的对象并定位其相应的3D绑定框。为了克服雷达信号的严重稀疏性和歧义性,我们提出了一个基于概率deno的扩散建模的稳健框架。我们设计了框架,可以在不同的多视图3D检测器上易于实现,而无需在训练或推理过程中使用LiDar Point Clouds。在特定的情况下,我们首先通过开发带有语义嵌入的轻质DENOIS扩散模型来设计框架编码器。其次,我们通过在变压器检测解码器的深度测量处引入重建训练,将查询降解训练开发为3D空间。我们的框架在Nuscenes 3D检测基准上实现了新的最新性能,但与基线检测器相比,计算成本的增加很少。
问题主机DOF 3D DOF主机/3D误差变量和收敛模式非均匀性动脉粥样硬化斑块 - 光束23529 761244 3%3%3%tranverse轴向应变,宿主 - > 3D复合cection cection cection spar - 光束89175 227675 2276739 4%25%25%25%25%25%25%的Edge Edge Ender-Ender 7 3D-3D-3D-3D-3D-3D-> - > 4560150 3% 30% Free-edge failure index, 3D -> HOST Composite notched specimen – Plate 10000 10000000 0.1% 3% Tensile peak stress, HOST -> 3D Multilayered beam – Beam 23595 63210 37% 0.4% Plastic strain, HOST -> 3D Double-swept blade – Beam 13200 203808 6% 1% Natural frequencies, HOST -> 3D Viscoelastic beam – Beam 5475 56400 10% 5% Modal loss factor, HOST -> 3D Randomly distributed RVE – Beam 13642 31524 43% 2% Local shear strain, HOST -> 3D Lattice structure – Beam 13584 617580 2% 1% Displacement, HOST -> 3D Three-point bending of a sandwich beam – Beam 14229 201504 1% 0% Transverse stress, HOST -> 3D Low-velocity impact on a bi-metallic plate – Plate 10659 856251 1% 16% Plastic strain, 3D -> HOST Large deflections in asymmetric cross-ply beams – Beam 5124 573675 1% 7% Shear stress, HOST -> 3D Disbonding in sandwich beams – Beam 41160 171888 24% 1% Peak load, HOST -> 3D Curing of a composite part –梁16569 599571 3%0%弹簧斜角,3D->主机
已经取得了显着的迈进,该领域显然是由于缺乏高质量数据集而导致的。早期数据集(如Pigraphs [39]和Prox [16])启动了探索,但受到可扩展性和数据质量的约束。MOCAP数据集[14,30]使用Vicon等复杂的设备优先考虑高质量的人类运动限制。但是,他们通常缺乏捕获多样化和沉浸式的HSI。通过RGBD视频录制的可扩展数据集提供了更广泛的实用程序,但受到人类姿势和对象跟踪质量较低的阻碍。合成数据集的出现[1,3,4,55]提供了成本效率和适应性,但无法封装完整的现实HSI频谱,尤其是在捕获动态3D触点和对象跟踪时。为了应对这些挑战,这项工作首先引入了trumans(t rack hum a um a u u u u u u u u u u u u u u a ctio n s in s cenes)数据集。Trumans成为最广泛的运动捕获HSI数据集,涵盖了15个小时以上15个小时的室内场景中的各种相互作用。它捕获了全身的人类动作和部分级别的对象动力学,重点是接触的现实主义。通过将物理环境复制到准确的虚拟模型中,可以进一步增强此数据集。外观和运动的广泛增强都应用于人类和物体,以确保相互作用的高度有限。接下来,我们设计了一个计算模型,通过将场景和动作作为条件同时采取行动来应对上述挑战。我们对杜鲁士数据集和运动合成方法进行了全面的交叉评估。特别是,我们的模型采用自回归的条件扩散,场景和动作嵌入作为征用输入,能够产生任意长度的运动。为了整合场景上下文,我们通过在本地化的基础上查询全局场景的占用来开发有效的场景感知者,这在导航杂乱的场景时表现出了3D感知的碰撞避免的强大效率。为了将框架的动作标签合并为条件,我们将时间特征集成到动作片段中,使模型在粘附在给定的动作标签时随时接受指令。场景和动作条件的这种双重整合增强了我们方法的可控性,为在3D场景中合成合理的长期运动提供了细微的界面。将trumans与现有人物进行比较,我们证明了杜鲁士人明显提高了最先进的方法的性能。此外,我们的方法在定性和定量上进行了评估,超过了现有的运动综合方法,其质量和零击性能力在看不见的3D场景上,非常接近原始运动捕获数据的质量。除了运动合成之外,杜鲁士人已经针对人类的姿势和接触估计任务进行了基准测试,证明了其多功能性并将其确立为一系列未来的研究努力的宝贵资产。
光学 MEMS 器件对于激光雷达和 AR 汽车应用越来越重要。准确预测和补偿封装翘曲对于保持精确的光学对准和长期可靠性至关重要。团队必须开发一个预测模型来模拟动态热分布期间附着在 PCB 基板上的芯片的翘曲/变形。
