考虑范围:考虑范围:为了有资格担任此职位,申请人必须满足本公告中列出的最低资格要求。必须在 E7 到 E8 的等级范围内。免责声明:您(申请人)负责申请内容和附件(包括其提交)的准确性和完整性。请确保您的申请中包含清单上的所有必需文件(如适用)。对于任何缺失或过期的文件,都需要提供说明备忘录。缺少文件且没有说明备忘录的申请将被“取消资格”。
考虑范围:考虑范围:为了有资格担任此职位,申请人必须满足本公告中列出的最低资格要求。必须在 E6 至 E7 等级之间。免责声明:您(申请人)负责申请内容和附件(包括其提交)的准确性和完整性。请确保您的申请中包含清单上的所有必需文件(如适用)。对于任何缺失或过期的文件,都需要提供说明备忘录。缺少文件且未提供说明备忘录的申请将被“取消资格”。
简要工作描述:履行前一级别或技能要求的职责,并为低级别人员提供指导。指导供应人员根据现行政策/程序指令建立财产和库存控制管理职能。根据 GCSS-Army 维护财产和设备。审查所有财产和设备交易的每日和每月记录,包括石油产品、单位/组织基本/战斗负荷和运营供应品。核对所有本地采购交易以进行财务/财产会计核算。确保武器/敏感物品库存按照现行监管程序进行。为单位/组织设备和记录零件专家 (92A) 提供技术援助。协助和建议供应官和连长。
近年来,深度学习和基于人工智能的分子信息学发展迅猛。AlphaFold 的成功引发了人们对将深度学习应用于多个子领域的兴趣,包括合成化学的数字化转型、从科学文献中提取化学信息以及基于天然产物的药物发现中的人工智能。人工智能在分子信息学中的应用仍然受到这样一个事实的限制:用于训练和测试深度学习模型的大多数数据都不是 FAIR 和开放数据。随着开放科学实践越来越受欢迎,FAIR 数据运动、开放数据和开源软件等举措应运而生。对于分子信息学领域的研究人员来说,拥抱开放科学并提交支持其研究的数据和软件变得越来越重要。随着开源深度学习框架和云计算平台的出现,学术研究人员现在能够轻松部署和测试自己的深度学习算法。随着深度学习的新硬件和更快硬件的发展,以及数字研究数据管理基础设施的不断增加,以及促进开放数据、开源和开放科学的文化,人工智能驱动的分子信息学将继续发展。本综述探讨了分子信息学中开放数据和开放算法的现状,以及未来可以改进的方法。
考虑范围:考虑范围:为了有资格担任此职位,申请人必须满足本公告中列出的最低资格要求。必须在 E6 至 E7 等级之间。免责声明:您(申请人)负责申请内容和附件(包括其提交)的准确性和完整性。请确保您的申请中包含清单上的所有必需文件(如适用)。对于任何缺失或过期的文件,都需要提供说明备忘录。缺少文件且未提供说明备忘录的申请将被“取消资格”。
考虑范围:考虑范围:为了有资格担任此职位,申请人必须满足本公告中列出的最低资格要求。必须在 E6 至 E7 等级之间。免责声明:您(申请人)负责申请内容和附件(包括其提交)的准确性和完整性。请确保您的申请中包含清单上的所有必需文件(如适用)。对于任何缺失或过期的文件,都需要提供说明备忘录。缺少文件且未提供说明备忘录的申请将被“取消资格”。
作为在议会中获取当前日信息的扩展,我们将使用“ Web刮擦”,该技术从网站收集数据,类似于从网页中复制注释。为此,我们使用称为“请求模块”的工具向网站提出请求。网站在唯一代码中使用数据响应,例如秘密语言网站的使用。此代码显示了如何设置网页。为了了解此代码,我们使用“ BS4”,充当翻译人员,帮助我们找到并提取所需的特定细节。使用提供的代码和一些用户输入,此过程将从所选网页中提取重要详细信息。在网络剪裁的这个特定实例中,我们将使用它来收集名词数据。此信息可以帮助我们看到各方,代表,省,城市或骑行所说的通用名词。
考虑范围:考虑范围:为了有资格担任此职位,申请人必须满足本公告中列出的最低资格要求。必须在 E5 至 E6 等级之间。免责声明:您(申请人)负责申请内容和附件(包括其提交)的准确性和完整性。请确保您的申请中包含清单上的所有必需文件(如适用)。对于任何缺失或过期的文件,都需要提供说明备忘录。缺少文件且未提供说明备忘录的申请将被“取消资格”。
当前的视频异常检测(VAD)方法本质上仅限于封闭设置的设置,并且可能在开放世界应用程序中遇到困难,在培训期间,测试数据中可能存在异常类别。最近的一些研究试图解决更现实的开放式VAD,该研究旨在解散视为异常和正常视频的看不见异常。但是,尽管这种能力对于构建更明智的视频监视系统至关重要,但这种设置着重于预测框架异常得分,没有识别异常类别的能力。本文进一步迈出了一步,并探讨了开放词汇视频异常检测(OVVAD),我们的目的是利用预训练的大型模型来检测和cate-可见和看不见的异常。为此,我们提出了一个模型,该模型将OVVAD分解为两个相互构成的任务 - 类不足的检测和特定于类的分类 - 并共同优化了这两个任务。特别是,我们设计了一个语义知识注入模块,以从大语言模型中引入语义知识以进行检测任务,并设计一种新型的异常合成模块,以在大型视觉生成模型的帮助下生成伪异常视频,以实现分类任务。这些语义知识和综合异常大大扩展了我们模型在检测和分类各种可见和看不见的异常方面的能力。对三个广泛使用的基准测试的实验实验实现了我们的模型在OVVAD任务上实现了最新的性能。