•美国西北大学SEDA OGRENCI•美国AMD的Stephen Neuendorffer•NHAN TRAN,美国费米拉布,美国•弗雷德里克·克乔尔斯塔德(Fredrik Kjolstad),美国斯坦福大学,美国•英国剑桥,德比亚斯·格罗瑟(Tobias Grosser)开源软件的流行率,以及对开源硬件的兴趣越来越多,可重新配置的技术在很大程度上是由专有的,封闭的工具提供的,这些工具与专有硬件架构紧密相关。鉴于这些工具和体系结构的复杂性,缺乏开放源解决方案历史上为该地区的教育,研究和创新带来了重大障碍。但是,最近,新的开源工具和方法涵盖了高水平合成和物理设计流的整个范围。在新型加速器体系结构支持机器学习的最新爆炸中,似乎正在重复类似的模式。尽管CPU和GPU体系结构的汇编通过大量开源项目(例如GCC和Clang/LLVM)支持了对新型Accelerator Architectures的支持,但尚未上游。本期特刊的目的是强调与可重构设备有关的开源软件和硬件技术的最新研究和开发,例如FPGA和CGRA,以及其他新型的加速器架构。它将包含涵盖广泛主题的文章,包括用于设计,优化,调试和机器学习的开源工具,针对从单个设备到分布式系统以及开源硬件和系统设计的广泛设计范围。本期特刊将成为嵌入式系统,计算机架构,设计自动化,特定领域的加速度和其他相关领域领域的研究人员,工程师和从业人员的宝贵资源,而感兴趣的主题包括但不限于以下开源解决方案:
尽管人工智能在开源生产中的重要性日益增加,但在如何利用人工智能来提高开源软件(OSS)团队绩效的重要问题上,人们所做的研究却很少[2, 5]。人工智能能力可以被认为是开源团队的一个独特特征,可以衡量开源团队寻求人工智能机会和资源的倾向。例如,人工智能可以以机器人的形式作为OSS团队的基础设施,以简化开源流程,如关闭拉取请求、故障排除、迎接新用户等。同时,OSS团队还可以探索人工智能的新商机,以增加项目的吸引力。由于开源社区以多种方式使用人工智能,因此尚不清楚人工智能能力如何影响OSS团队的绩效[4]。因此,我想问:
•问题或挑战。许多最佳项目以简洁的问题开头。“我们应该如何最好地部署医务人员来达到马拉维的人口?” “ 1889年至1890年,有多少美国人死于俄罗斯流感流行病?” “我们可以在痰液样品的图像中识别出结核菌细菌吗?” “开源软件的经济影响是什么?”其他人则从开放式挑战开始。“开发一种算法,以建议学生如何根据个人食品偏好和日常饮食目标在校园用餐选择中进行选择。” (项目不应针对方法论。例如,“使用支持向量机对此脑肿瘤数据集进行分类”的指示不会使团队足够自由地识别,评估和选择解决方案策略。)
通常,交通流量模拟器分为两个主要类别:显微镜和宏观。前者专注于详细的单个车辆行为,而后者则侧重于大规模(例如城市规模)交通的集体行为。介观交通模拟器有时分为宏观的交通模拟器是两者的混合物。尽管他们在某种程度上描述了个人车辆行为,但其主要目的是模拟大规模流量的集体行为。中镜模拟器对于建模大规模的交通管理和操作特别有用,例如拥塞定价,乘车共享和自动化的车队管理,这些天数越来越突出。几个显微镜交通模拟器被发表为开源软件,例如Sumo(Lopez等,2018)。据作者所知,介质和宏观模拟器的可用性是有限的。
量子计算是一项有望在未来几十年带来巨大优势的技术。尽管该技术仍处于原型阶段,但过去几年中,许多原型设备已向公众开放。与此同时,开源软件的开发也日趋成熟,这些软件用于以越来越复杂的方式使用和测试量子硬件。这些工具不仅为量子计算提供了新的教育机会,而且更广泛地为量子信息科学乃至整个量子物理学提供了新的教育机会。在本文中,我们将介绍一个旨在利用这些机会的教育资源案例研究:开源在线教科书“使用 Qiskit 学习量子计算”。本文概述了所涵盖的主题,并解释了每个主题所采用的方法。
尽管许多研究表明多种疾病中的脑部节奏异常,但靶向深脑区域的有限手段却限制了驱动大脑节奏的治疗潜力。因此,我们开发了一种无创的毫秒精确的感觉刺激,以驱动脑节律。在这里,我们首次介绍了新开发的开源软件和指令,用于建筑,测试,调试,并使用脑电波(大脑广谱音频/视觉曝光)刺激。我们证明了多种物种和不同实验环境之间的脑电波刺激。这些方法构成了一种可自定义的,开源,可访问和无创的技术,可刺激脑振荡,从而有因果测试节奏的大脑活动如何影响脑功能。
摘要。目前,制造可靠的无人机(无人机)是科学和技术的一项重要任务,因为此类设备在数字经济和现代生活中有很多用例,所以我们需要确保它们的可靠性。在本文中,我们建议用低成本组件组装四轴飞行器以获得硬件原型,并使用现有的开源软件解决方案开发具有高可靠性要求的飞行控制器软件解决方案,该解决方案将满足航空电子软件标准。我们将结果用作教学课程“操作系统组件”和“软件验证”的模型。在研究中,我们分析了四轴飞行器及其飞行控制器的结构,并提出了一种自组装解决方案。我们将 Ardupilot 描述为无人机的开源软件、适当的 APM 控制器和 PID 控制方法。当今航空电子飞行控制器可靠软件的标准是实时分区操作系统,该系统能够以预期的速度响应来自设备的事件,并在隔离分区之间共享处理器时间和内存。此类操作系统的一个很好的例子是开源 POK(分区操作内核)。在其存储库中,它包含一个四轴飞行器系统的示例设计,使用 AADL 语言对其硬件和软件进行建模。我们将这种技术与模型驱动工程应用于在真实硬件上运行的演示系统,该系统包含一个以 PID 控制作为分区过程的飞行管理过程。使用分区操作系统将飞行系统软件的可靠性提升到了一个新的水平。为了提高控制逻辑的正确性,我们建议使用形式验证方法。我们还提供了使用演绎方法在代码级别以及使用微分动态逻辑在信息物理系统级别验证属性的示例,以证明稳定性。
摘要。目前,制造可靠的无人机是科学技术领域的一项重要任务,因为此类设备在数字经济和现代生活中有很多用途,因此我们需要确保其可靠性。在本文中,我们建议用低成本组件组装四轴飞行器以获得硬件原型,并使用现有的开源软件解决方案开发具有高可靠性要求的飞行控制器软件解决方案,该解决方案将满足航空电子软件标准。我们将结果用作教学课程“操作系统组件”和“软件验证”的模型。在研究中,我们分析了四轴飞行器及其飞行控制器的结构,并提出了一种自组装解决方案。我们将 Ardupilot 描述为无人机的开源软件、适当的 APM 控制器和 PID 控制方法。当今航空电子飞行控制器可靠软件的标准是实时分区操作系统,该系统能够以预期的速度响应来自设备的事件,并在隔离分区之间共享处理器时间和内存。开源 POK(分区操作内核)就是这种操作系统的一个很好的例子。在其存储库中,它包含一个四轴飞行器系统的示例设计,使用 AADL 语言对其硬件和软件进行建模。我们将这种技术与模型驱动工程应用于在真实硬件上运行的演示系统,该系统包含一个以 PID 控制作为分区过程的飞行管理过程。使用分区操作系统将飞行系统软件的可靠性提升到了一个新的水平。为了提高控制逻辑的正确性,我们建议使用形式化验证方法。我们还使用演绎方法在代码级别提供可验证属性的示例,并使用差分动态逻辑在信息物理系统级别提供可验证属性的示例,以证明稳定性。
摘要。目前,制造可靠的无人机是科学技术领域的一项重要任务,因为此类设备在数字经济和现代生活中有很多用途,因此我们需要确保其可靠性。在本文中,我们建议用低成本组件组装四轴飞行器以获得硬件原型,并使用现有的开源软件解决方案开发具有高可靠性要求的飞行控制器软件解决方案,该解决方案将满足航空电子软件标准。我们将结果用作教学课程“操作系统组件”和“软件验证”的模型。在研究中,我们分析了四轴飞行器及其飞行控制器的结构,并提出了一种自组装解决方案。我们将 Ardupilot 描述为无人机的开源软件、适当的 APM 控制器和 PID 控制方法。当今航空电子飞行控制器可靠软件的标准是实时分区操作系统,该系统能够以预期的速度响应来自设备的事件,并在隔离分区之间共享处理器时间和内存。开源 POK(分区操作内核)就是这种操作系统的一个很好的例子。在其存储库中,它包含一个四轴飞行器系统的示例设计,使用 AADL 语言对其硬件和软件进行建模。我们将这种技术与模型驱动工程应用于在真实硬件上运行的演示系统,该系统包含一个以 PID 控制作为分区过程的飞行管理过程。使用分区操作系统将飞行系统软件的可靠性提升到了一个新的水平。为了提高控制逻辑的正确性,我们建议使用形式化验证方法。我们还使用演绎方法在代码级别提供可验证属性的示例,并使用差分动态逻辑在信息物理系统级别提供可验证属性的示例,以证明稳定性。