1 College of Advanced Interdisciplinary Studies & Hunan Provincial Key Laboratory of Novel Nano-optoelectronic Information Materials and Devices, National University of Defense Technology, Changsha, Hunan 410073, People's Republic of China 2 Nanhu Laser Laboratory, National University of Defense Technology, Changsha, Hunan 410073, People's Republic of China 3 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, People's Republic of China 4 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, People's Republic of China 5 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, People's Republic of China 6 Institute for新加坡新加坡国立大学功能智能材料,新加坡117544,新加坡材料科学与工程系,新加坡国立大学,新加坡117575,新加坡
abbit biswas *,rui Xu,Gustavo A. Alvarez,Jin Zhang *,Joyce的Christian-Salamheh,Anand B. Pummirath,Corry Burns,Jordan A. Elkins,Tymophi S. Paykov,Robert Vaggei,A。Glen Birdwell,Mahesh R. Neupnae,Elias J. Garatt,Tony G. Evanov,Bradford b。pate,Yuji Zhao,Hanue Zhu *,Zhiting Tea *,Angel Rubio *和Pulickel M. Ajayan *
摘要。对跨纳米界界面的光诱导电荷电流的精确和超快控制可能导致在能量收集,超快电子和连贯的Terahertz来源中的重要应用。最近的研究表明,几种相对论机制,包括逆旋转效应,逆Rashba - Edelstein效应和逆旋转轨道扭转效应,可以将纵向注入的自旋极化电流从磁性材料转化为横向电荷电流,从而使Terahertz Generation均可使用这些电流。但是,这些机制通常需要外部磁场,并且在自旋极化速率和相对论自旋转换的效率方面表现出局限性。我们提出了一种非递归和非磁性机制,该机制直接利用界面上的光激发高密度电荷电流。我们证明了导电氧化物RUO 2和IRO 2的电动各向异性可以有效地将电荷电流偏向横向,从而导致有效和宽带Terahertz辐射。重要的是,与以前的方法相比,这种机制具有更高的转化效率,因为具有较大电动各向异性的导电材料很容易获得,而进一步提高重金属材料的旋转台角度将具有挑战性。我们的发现提供了令人兴奋的可能性,可直接利用这些光激发的高密度电流,用于超快电子和Terahertz光谱。
由于纤锌矿半导体中的自旋轨道耦合与闪锌矿半导体相比相对较弱,因此 III 族氮化物半导体 GaN 是用于高性能光学半导体自旋电子器件(如自旋激光器)的有前途的材料。为了降低自旋激光器的工作功率,有必要展示从铁磁材料到具有低电阻接触的 GaN 的高效电自旋注入。这里,通过在 CFAS 和 GaN 之间插入超薄 Co 层,开发了外延半金属 Heusler 合金 Co 2 FeAl x Si 1 − x (CFAS)/GaN 异质结构。CFAS/ n + -GaN 异质结清楚地显示了隧道传导,整流非常小,电阻面积积低至 ≈ 3.8 k 𝛀 μ m 2,比以前工作中报道的要小几个数量级,在室温下。使用具有 CFAS/ n + -GaN 接触的横向自旋阀装置,在低温下观察到非局部自旋信号和 Hanle 效应曲线,表明块状 GaN 中存在纯自旋电流传输。在高达室温的温度下观察到自旋传输,在低于 2.0 V 的低偏置电压下具有 0.2 的高自旋极化。这项研究有望为具有高度自旋极化和低电阻接触的 GaN 基自旋电子器件开辟一条道路。
Mir Mohammad Sadeghi 1+ , Yajie Huang 2+ , Chao Lian 3,4 , Feliciano Giustino 3,4 , Emanuel Tutuc 5 , Allan H. MacDonald 3 , Takashi Taniguchi 6 , Kenji Watanabe 7 , Li Shi 1,2*
图1:VDW异质结构的无机组装。(a)几个从硅芯片伸出的悬臂的SEM显微照片。(b)示意图和(c)横截面高角环形暗场(HAADF)扫描透射电子显微镜(STEM)图像,显示了悬臂的多层金属涂层,可容纳2DM标本(样品中显示了多层MOS 2晶体中的样品)。(d)使用能量色散X射线光谱法在(c)中显示的区域的元素映射。(E)涂层过程后悬臂表面的AFM显微照片。均方根粗糙度值(r rms)在图像e上指示。 (F-H)采用的步骤将HBN晶体拾起到制造的悬臂上:(f)对齐,(g)接触和(h)升降。sem(l)和悬臂的光学(M)显微照片,拾取了厚(约40 nm)HBN晶体后。(i,j)拾取石墨烯晶体的步骤:对齐(I),接触和升降(J)。(n)光学显微照片显示了SIO 2上与石墨烯接触的悬臂(用虚线突出显示)。悬臂的灵活性可以准确控制层压过程。(k)石墨烯/HBN堆栈沉积在底部HBN晶体上。在整个底部HBN晶体被悬臂覆盖以选择性释放堆栈而不是将其捡起之前,层压过程要停止。(O)光学显微照片显示了氧化硅晶片上产生的异质结构,显示了较大的均匀区域。可以在补充第2节中找到有关其他样本的更多数据。
这项工作表明了通过将铁电batio 3(BTO)整合为底层,半导体MOO 3作为中间层和等离激元银纳米颗粒(Ag nps)作为顶层,将有效的三元异质结构光催化剂制造为底层,半导体MOO 3。Batio 3 /Moo 3 /ag(BMA)异质结构在紫外线batio 3 /ag(BA(BA)和MAO时,在UV -Visible Light Plintination下,若丹明B(RHB)染料的光降解和光催化效率为100%,在60分钟下显示为60分钟。BMA异质结构中的光催化活性增加归因于其增强的界面电场,这是由于BTO -MOO 3和MOO 3 -ag界面的电动双层形成。对BMA异质结构观察到的表面等离子体共振(SPR)峰的较高蓝光清楚地表明,在光照明下,电子向顶部AG NPS层的转移增加了。较高的电阻开关(RS)比,电压最小值的差异增加以及改善的光电流产生,从I – V特性中可以明显看出,这说明了BMA异质结构中增强的电荷载体的产生和分离。在BMA异质结构的Nyquist图中观察到的较小的弧形半径清楚地展示了其增加的界面电荷转移(CT)。还研究了BMA异质结构的CT机制和可重复使用性。
在基于量子阱的异质结构材料中,研究能态密度对量化磁场强度和占据的依赖关系,可以为纳米级半导体结构中电荷载流子的能谱提供有价值的信息。当低维半导体材料暴露于横向量化磁场时,能态密度可以通过动力学、动力学和热力学量的振荡依赖关系来测量——磁阻、磁化率、电子热容量、热电功率、费米能和其他物理参数 [3, 4]。由此可见,在横向和纵向磁场存在下研究矩形量子阱导带能态密度的振荡是现代固体物理学的迫切问题之一。
1 基尔基督教阿尔布雷希特大学材料科学系、功能纳米材料系、工程学院,基尔,Kaiserstraße 2,D-24143 基尔,德国 2 摩尔多瓦技术大学计算机、信息学和微电子学院微电子和生物医学工程系纳米技术和纳米传感器中心,168 Stefan cel Mare str.,MD-2004,基希讷乌,摩尔多瓦共和国 3 中佛罗里达大学物理系,佛罗里达州奥兰多 32816-2385,美国 4 利兹大学化学学院,利兹 LS2 9JT,英国 5 石油和能源研究大学(UPES)工程学院物理系,Energy Acres 大楼,Bidholi,德拉敦 248007,北阿坎德邦,印度 6 材料科学系、合成和实际系结构,基尔基督教阿尔布雷希特大学工程学院,基尔,Kaiserstraße 2,D-24143 基尔,德国 7 材料科学系,多组分材料系主任,基尔基督教阿尔布雷希特大学工程学院,基尔,Kaiserstraße 2,D-24143 基尔,德国 8 弗劳恩霍夫硅技术研究所 (ISIT), Itzehoe, Fraunhoferstraße 1, D- 25524, 德国 9 乌得勒支大学地球科学系,Princetonlaan 8a, 3584 CB 乌得勒支,荷兰 * 通讯作者:O. Lupan 博士教授 ( ollu@tf.uni-kiel.de ; oleg.lupan@mib.utm.md ) 德国基尔大学;摩尔多瓦技术大学,摩尔多瓦; UCF,美国 David Santos-Carballal 博士(d.santos-carballal@leeds.ac.uk)英国利兹大学 L. Kienle 教授(lk@tf.uni-kiel.de)德国基尔大学 R. Adelung 教授(ra@tf.uni-kiel.de)德国基尔大学 A. Vahl 博士(alva@tf.uni-kiel.de)德国基尔大学 S. Hansen 博士(sn@tf.uni-kiel.de)德国基尔大学
北德克萨斯大学材料科学与工程系搅拌摩擦加工中心,美国德克萨斯州登顿 Priyanka Agrawal 北德克萨斯大学材料科学与工程系搅拌摩擦加工中心,美国德克萨斯州登顿 Mageshwari Komarasamy 北德克萨斯大学材料科学与工程系搅拌摩擦加工中心,美国德克萨斯州登顿 Yongo Sohn 中佛罗里达大学材料科学与工程系和先进材料加工与分析中心,美国佛罗里达州奥兰多 Rajiv S. Mishra 北德克萨斯大学材料科学与工程系搅拌摩擦加工中心,美国德克萨斯州登顿 北德克萨斯大学先进材料与制造工艺研究所,美国德克萨斯州登顿