基于锚点的大规模多视图聚类因其在处理海量数据集方面的有效性而引起了广泛关注。然而,当前的方法主要通过探索锚点图或投影矩阵之间的全局相关性来寻找用于聚类的共识嵌入特征。在本文中,我们提出了一种简单而有效的可扩展多视图张量聚类(S 2 MVTC)方法,我们的重点是学习视图内和跨视图的嵌入特征的相关性。具体而言,我们首先通过将不同视图的嵌入特征堆叠到张量中并旋转它来构造嵌入特征张量。此外,我们构建了一种新颖的张量低频近似(TLFA)算子,它将图相似性结合到嵌入特征学习中,有效地实现不同视图内嵌入特征的平滑表示。此外,对嵌入特征应用共识约束以确保视图间语义一致性。在六个大规模多视图数据集上的实验结果表明,S 2 MVTC 在聚类性能和 CPU 执行时间方面明显优于最先进的算法,尤其是在处理海量数据时。S 2 MVTC 的代码已公开发布在 https://github.com/longzhen520/S2MVTC。
i) 一种适用于通用 n 级量子系统的具有普遍有效性的无坐标算法;ii) 当量子发散函数(量子相对熵)满足数据处理不等式(DPI)时,则得到的量子度量满足 MP。
摘要 我们为张量网络状态的参数族设计量子压缩算法。我们首先建立存储给定状态族中的任意状态所需的内存量的上限。该上限由合适流网络的最小割确定,并与从指定状态的参数流形到状态所体现的物理系统的信息流有关。对于给定的网络拓扑和给定的边维度,当所有边维度都是同一整数的幂时,我们的上限是严格的。当不满足此条件时,该上限在乘法因子小于 1.585 时是最佳的。然后,我们为一般状态族提供了一种压缩算法,并表明该算法对于矩阵乘积状态在多项式时间内运行。
I.简介基于v iSion的导航是下一代On-On-On-On-On-On-Os-andActivedEbrisredebremoval任务的关键技术。在这些情况下,指导和控制定律应采用相对的Chaser-Chaser-Toget姿势(即位置和态度)喂食,这可能会从单眼图像中方便地估算,因为这些传感器是简单,光线的,并且消耗了很少的功率。传统上,图像处理算法分为1)手工制作的特征[1,2]和2)基于深度学习的[3-14]。然而,前者受到较低鲁棒性的影响,对典型的空间图像特征(例如,信噪比低,严重和迅速变化的照明条件)和背景。神经网络(NNS)可以通过适当的培训克服此类弱点,但通常会导致高计算负担,这与典型的船上处理能力几乎不兼容。
与矩阵乘法的算法问题有关[10; 29; 34],当代工作的显着部分涉及基本操作(例如张量产品[6],Kronecker产品[8],直接总和[29; 31]和许多其他[7; 30]。该问题的对称对准涉及多项式,而它们的自然代数操作是总和和产物。的确,这些总和的警告等级得到了广泛的研究[12; 24; 36],一个特定的众所周知的猜想认为,Waring等级的添加性是具有不连接变量家族的多项式的总和[4],但事实证明是错误的[33]。在产品下,警告等级的行为如何?这个问题似乎并没有吸引与总和相比的任何关注,但是以下众所周知的结果可能是一个很好的起点。
我们提出了一个用于量子多体模拟的开源张量网络python库。的核心是一种Abelian对称张量,以稀疏的块结构实现,该结构由密集的多维阵列后端的逻辑层管理。这是在矩阵prod-uct状态下运行的高级张量网络算法和预测的纠缠对状态的基础。诸如Pytorch之类的适当后端,可以直接访问自动分化(AD),以实现GPU和其他支持的加速器的成本功能梯度计算和执行。我们在具有无限投影纠缠状态的模拟中显示了库的表现,例如通过Image nime time Evolution通过AD找到基态,并模拟Hubbard模型的热状态。对于这些具有挑战性的示例,我们识别并量化了由对称调整器实现利用的数值优势来源。
给定一个随机子空间H n在Hilbert Space的张量中均匀地选择了v n w w,我们认为相对于张量结构,H n h n元素的所有单数值的集合k n。在WIFED的背景下,该随机集获得了大量定律,并且在[3]中以相同的速度以相同的速度倾向于h n,v n的尺寸。在本文中,我们提供了衡量浓度估计值。K n的概率研究是由量子信息理论中重要问题的动机,并允许为尺寸提供最小的已知维度(184),即一个Ancilla空间,允许最小输出熵(MOE)违规。通过我们的估计,作为应用程序,我们可以为发生MOE发生的空间的维度提供实际界限。
量子状态的实时和想象的时间演变是研究量子动态,准备接地状态或计算热力学可观察物的强大工具。在近期设备上,各种量子时间演变是这些任务的有前途的候选人,因为可以量身定制所需的电路模型以权衡可用的设备功能和近似准确性。但是,即使可以可靠地执行电路,由于量子几何张量(QGT)的计算,变异量子时间演化算法对于相关系统大小而迅速变得不可行。在这项工作中,我们通过利用双重公式来规避对QGT的明确评估来解决这个缩放问题。我们演示了海森伯格汉密尔顿的时间演变的算法,并表明它以标准变化量子时间演化算法的成本的一小部分准确地重现了系统动力学。作为量子假想时间演变的应用,我们计算了Heisenberg模型的热力学观察到的每个位置的能量。
扩散张量成像(DTI)是磁共振成像(MRI)的高级方式,它扩展了扩散加权成像(DWI)的能力。DWI测量水扩散信号,DTI利用来自多个扩散方向的数据来绘制大脑中水分子的三维扩散,从而使其微观结构组织的评估。源自DTI的密钥指标包括分数各向异性(FA),它反映了白质微结构的完整性;平均扩散率(MD),这表明了总水扩散的大小,并且与细胞密度和细胞外空间有关。和径向扩散率(RD),代表垂直于轴突纤维的扩散,与髓磷脂状况相关[1]。dTI已应用于神经康复领域,研究报告了基于白质分析[2-4],其效用在预测中风和创伤性脑损伤后的运动和功能恢复方面。此外,DTI已用于调查神经退行性疾病的白质变化[5-7],并提供了一种定量方法来评估细微的微结构变化,而常规MRI很难检测到这些变化[8,9]。