i) 一种适用于通用 n 级量子系统的具有普遍有效性的无坐标算法;ii) 当量子发散函数(量子相对熵)满足数据处理不等式(DPI)时,则得到的量子度量满足 MP。
其中 ρ 是量子态,U ∈ U ( H ) ,φ U 表示每个单调度量张量 G 的等距同构,这是因为在完全正的、保迹映射下必须具有单调性,这代表了经典粗粒化量子版本 [ 35 , 40 ]。从无穷大的角度来看,作用量φ可以用 S + 上的基本矢量场来描述,从而提供了酉群李代数 u ( H ) 的反表示。这些矢量场用 X b 表示,其中 b 是 H 上的埃尔米特算子(有关更多信息,请参见第 2 节),对于所有单调度量张量来说,它们都是 Killing 矢量场,因为 U ( H ) 通过等距同构起作用。现在,李代数 u ( H ) 是 H 上有界线性算子空间 B ( H ) 的李子代数,具有由线性算子之间的交换子 [· , ·] 给出的李积。特别地,可以证明 B ( H )(具有 [· , ·] )同构于 U ( H ) 复数化的李代数,即 H 上由可逆线性算子组成的李群 GL ( H ) 的李代数。此外,已知 [ 9 , 15 , 26 , 27 ] GL ( H ) 作用于流形 S + ,更一般地作用于整个量子态空间 S ,根据
下文将从广义上讨论量子张量网络,它为我们提供了一种近似和高性能处理量子态的有效方法 [1–3]。由于实际量子计算机应具有大量量子比特,即 n ≥ 1000,基态数为 2 n > 10 300 。这意味着将用户(大)数据输入量子寄存器所需的基本幺正运算数量通常应为同一数量级。因此,只有对某些特殊类型的量子态,才能有效地将此类系统的状态密度矩阵分解为有限的收缩张量族(张量串)。另一方面,几何思想和几何工具,包括量子张量网络几何 [4],在量子计算和量子信息论中相当常见,尤其是在研究纠缠 [5, 6] 和引力的出现 [7] 方面。本篇短文概述了一种新的几何方法,该方法使用具有相对较少独立参数的量子张量网络来模拟量子态。该方法基于在正常坐标下的协变级数,该级数基于具有适当线性联络的 k(k≪n)四维流形的直积以及相应的曲率和/或挠率;我们只考虑 k = 1 的情况,但显然可以推广到任意 k > 1 的情况。给定一个联络(或一个(伪)黎曼度量),计算曲率和挠率的协变导数,然后计算量子态的系数作为秩为 n 的某个张量的分量。参考文献 [8–11] 中给出了级数系数的明确公式和计算方法。第 2 节包含一些必要的数学准备工作和泡利基中量子态的简要描述。在第 3 节中,我们将讨论该级数的协变级数。 3 量子比特量子系统的状态空间由四维流形建模;我们详细描述了具有零曲率和非零挠率的线性连接的情况的协变展开。第 4 节给出了为三量子比特的量子系统建模 Greenberger-Horne-Zeilinger (GHZ) 状态的说明性示例。
凝聚态理论中的张量网络算法 [1-5] 最近在量子引力领域产生了巨大影响,成为研究普朗克尺度时空性质及其全息特性的有力新工具。在 AdS/CFT 框架中,Ryu-Takayanagi 公式与几何/纠缠对应 [6-9] 相结合,导致了一种新的全息对偶构造方法,如今由 AdS/MERA 猜想 [10] 进一步捕获,该猜想建议将量子多体边界态的辅助张量网络分解的几何解释为对偶体几何的表示 [11,12]。张量网络在此意义上的使用产生了一种新的构造方法 [13],其中某些全息理论的关键纠缠特征可以通过张量网络状态类来捕获。在量子引力的非微扰方法中,包括圈量子引力(LQG)和自旋泡沫模型[14-17]及其在群场论(GFT)方面的推广[18-20],前几何量子自由度被编码在随机组合自旋网络结构中,用SU(2)的不可约表示标记,并在每个节点上赋予规范对称性。此类自旋网络态可理解为特殊的对称张量网络[21,22],张量网络技术已在量子引力领域得到广泛应用[23-26]。在半经典层面上,离散时空和几何与此类结构自然相关,其量子动力学与(非交换的)离散引力路径积分相关[27-30]。悬而未决的问题是展示连续时空几何和广义相对论动力学如何从具有相同前几何自由度的全量子动力学中诞生,这实际上将量子时空描述为一种特殊的量子多体系统[31-33]。从这个意义上说,张量网络技术已广泛应用于圈量子引力背景下的自旋泡沫重正化问题[23-26],以及用于分析自旋网络纠缠结构的定量工具,并寻找具有与半经典解释中的良好几何兼容的关联和纠缠特性的自旋网络态类。最近,张量网络表示方案已被用于提取自旋网络态非局域纠缠结构的信息,并在背景独立的情况下理解局域规范结构对全息纠缠的普适标度特性的影响[34]。沿着这条思路,一些作者在 [ 35 ] 中定义了随机张量网络和群场论 (GFT) 状态之间的精确词典,并以此为基础在非微扰量子引力背景下首次推导了 Ryu-Takayanagi 公式 [ 6 ]。该字典还在对 GFT 状态进行不同限制的情况下,暗示了 LQG 自旋网络状态与张量网络之间的对应关系,以及随机张量模型 [ 36 ] 与张量网络之间的对应关系。总结上述字典,GFT 状态定义了具有场论公式和量子动力学的(广义)规范对称张量网络。GFT 张量的场论性质提供了一种自然的随机解释,尽管它对应的概率测度通常与标准随机张量网络模型的概率测度不同。此外,GFT 网络的主要特征——晶格拓扑、张量序、键维数——不是固定的,而是由所考虑的特定 GFT 模型动态诱导的。从这个意义上说,GFT 定义了通常张量网络的广义。因此,GFT 定义的张量网络的关联函数将在很大程度上取决于模型的选择。如 [ 35 ] 所示,标准随机张量网络模型与 GFT 张量网络之间的相似性在非相互作用 GFT 理论的最简单情况下尤其明显,其中理论的传播子诱导最大纠缠
显微镜和宏观水平的压力张量(相当于负应力张量)都是工程和科学的许多方面,包括流体动力学,固体力学,生物物理学和热力学。从这个角度来看,我们回顾了计算微观压力张量的方法。建立了平衡和非质量系统的不同压力形式之间的连接。我们还指出了该领域的几个挑战,包括有关微观压力张量定义的历史争议;具有多体和远程电位的困难;软件和综合工具的不足;以及缺乏探测纳米级压力张量的实验途径。建议未来的方向。
作用 β 在 S 上是传递的,并将其变成齐次流形[2-5]。因此,U(H) 正则作用的基本向量场形成 GL(H) 作用的基本向量场代数的李子代数。[6] 证明了,为了描述 β 的基本向量场,只需考虑 U(H) 在 S(H) 上的正则作用的基本向量场以及与期望值函数 la(ρ)=Tr(aρ) 相关的梯度向量场,其中 a 是 H 上有界线性算子空间 B(H) 中的任意自伴元素,借助于所谓的 Bures-Helstrom 度量张量 [7-12]。这个例子提供了酉群 U(H)、S(H) 的 GL(H) - 齐次流形结构、Bures–Helstrom 度量张量和期望值函数之间的意外联系。然而,这并不是单调度量张量与一般线性群 GL(H) “相互作用”的唯一例子。事实上,在 [6] 中,还证明了 U(H) 正则作用的基本向量场以及与期望值函数相关的梯度向量场通过 Wigner–Yanase 度量
Bini-Capovani-Lotti-Romani (1979) 研究了当矩阵的一个元素设置为零时,是否可以通过五次乘法(而不是简单的 6 次)来计算 M ⟨ 2 ⟩,即这个简化的矩阵乘法张量的秩是否为 5。
1 南开大学人工智能学院,天津 300350,中国;2 斯科尔科沃科学技术学院,莫斯科 121205,俄罗斯;3 杭州电子科技大学计算机学院,杭州 310018,中国;4 哥白尼大学信息学系,托伦 87-100,波兰;5 波兰科学院系统研究所,华沙 01-447,波兰;6 南开大学计算机学院,天津 300350,中国;7 阿根廷射电天文学研究所 IAR-CCT 拉普拉塔,CONICET / CIC-PBA / UNLP,Villa Elisa 1894,阿根廷;8 日本理化学研究所信息系统与网络安全总部计算工程应用部,和光市 351-0106,日本; 9 英国剑桥大学精神病学系,剑桥 CB2 8AH;10 西班牙加泰罗尼亚维多利亚中央大学数据与信号处理研究组,加泰罗尼亚 08500