这项研究是一项回顾性研究,该研究已由Bezmialememvakıf大学机构伦理委员会批准(日期为2018年10月2日的决定,编号为18/236)。通过表型发现和遗传分析被诊断出的八名受试者参与了这项研究。从同意参加研究的参与者及其父母那里获得了书面知情同意。审查了8位受试者(6名男性,2名女性,平均年龄8岁)和11名年龄匹配的对照组(4名男性,7名女性,平均年龄11岁)。表现症状是精神和运动的恶化,进行性视觉丧失和癫痫发作。所有孩子都存在视力障碍和典型的眼科发现。患者是儿科神经病学系的患者。对照组由没有临床病史的健康患者组成,由于头痛而适用于门诊诊所,并报告其身体检查和MRI正常。回顾性评估所有受试者的常规脑MRI和DTI发现。
摘要 目的:用于预测阿尔茨海默病 (AD) 进展的机器学习方法可以极大地帮助研究人员和临床医生制定有效的 AD 预防和治疗策略。方法:本研究提出了一种利用多任务集成学习方法预测 AD 进展的新型机器学习算法。具体来说,我们提出了一种基于脑生物标志物时空变异性相似性测量的新型张量多任务学习 (MTL) 算法来模拟 AD 进展。在该模型中,张量中每个患者样本的预测被设置为一个任务,其中所有任务共享一组通过张量分解获得的潜在因子。此外,由于受试者具有连续的脑生物标志物测试记录,因此该模型被扩展为利用梯度增强核集成受试者的时间连续预测结果以找到更准确的预测。结果:我们利用阿尔茨海默病神经影像学计划 (ADNI) 的数据进行了广泛的实验,以评估所提出的算法和模型的性能。结果表明,与基准和最先进的多任务回归方法相比,该模型在简易精神状态检查表 (MMSE) 问卷和阿尔茨海默病评估量表-认知分量表 (ADAS-Cog) 认知分数方面预测 AD 进展具有更高的准确性和稳定性。结论:脑生物标志物关联信息可用于识别个体脑结构的变化,该模型可用于通过磁共振成像 (MRI) 数据和不同阶段 AD 患者的认知分数有效地预测 AD 的进展。索引词——阿尔茨海默病、多任务学习、脑生物标志物时空相关性、张量分解、梯度提升集成学习。临床和转化影响声明:该模型利用磁共振成像数据计算患者不同阶段的认知分数来预测和诊断 AD 进展。实验中揭示的重要脑生物标志物关联信息可作为早期识别 AD 的潜在指标。
张量网络广泛用于提供有效的局部量子多体系统的低能状态的有效表示,最近被提议为Ma-Chine学习体系结构,这些体系结构可以在传统方面具有优势。在这项工作中,我们表明,张量网络体系结构尤其具有潜在的潜在属性来保存机器学习,这在诸如医疗记录处理之类的任务中至关重要。首先,我们描述了馈电神经网络中存在的一个新的隐私漏洞,以合成和现实世界数据集进行了说明。然后,我们开发明确定义的条件,以确保对这种脆弱性的鲁棒性,这涉及仪表符号下的模型的表征。我们严格地证明,张量 - 网络构造可以满足此类条件。这样做,我们为基质产品状态定义了一种新型的规范形式,该状态具有高度的规律性,并根据基于奇异值分解的规范形式固定剩余的规格。我们通过在医疗记录数据集中对矩阵产品状态进行培训的实际示例补充发现结果,这表明攻击者从模型的术语中提取有关培训数据集的信息的可能性很大。鉴于在训练张量 - 网络架构方面的专业知识越来越大,这些重新
小角度X射线张量层析成像和相关的广角X射线张量扫描仪是X射线成像技术,可以通过断层扫描重建扩展样品的各向异性散射密度。在以前的研究中,这些方法已用于成像样品,其中散射密度缓慢地取决于散射方向,通常对方向性进行建模,即质地,球形谐波扩展到'= 8或更低为止。这项研究研究了几种已建立的算法从小角度X射线张量断层扫描上的样品上的性能,其变化速度更快,这是散射方向的函数,并比较了它们的预期和达到的性能。使用具有已知纹理的AS绘制钢丝中的广角散射数据对各种算法进行了测试,以确定用于此类样品的张量断层扫描方法的可行性,并比较现有算法的性能。
这项工作涉及解决高维fokker-planck方程的新观点,即可以根据其相关粒子动力学采样的轨迹将求解PDE求解为密度估计任务的独立实例。使用这种方法,一个回避误差积累是由于在参数化函数类上集成了PDE动力学而产生的。这种方法显着简单地简化了部署,因为人们没有基于不同方程的损失条款的挑战。特别是我们引入了一类新的高维函数,称为功能层次张量(FHT)。FHT ANSATZ利用了层次的低级别结构,从而相对于维度计数,具有线性可扩展的运行时和内存复杂性的优势。我们引入了一种基于草图的技术,该技术对与方程相关的粒子动力学模拟的粒子进行密度估计,从而根据我们的ANSATZ获得了Fokker-Planck解决方案的表示。我们将提出的方法成功地应用于具有数百个变量的三个具有挑战性的时间依赖的Ginzburg-Landau模型。
张量网络是将高维张量的因素化为较小张量的网络样结构。起源于凝结物理学,并以其有效表示量子多体系统的有效表示[1-10],这些结构允许重新搜索者理解此类系统的复杂属性,并使用经典计算机模拟它们[11-13]。值得注意的是,张量网络是模拟量子优势实验结果的最成功的方法[14-16]。此外,在数值线性代数群落中重新发现了张量网络[17-19],其中该技术已适应其他高维问题,例如数值整合[20],信号处理[21]或流行性模型[22]。随着机器学习的出现和寻求表达且易于培训的模型的追求,张量网络被认为是有前途的候选人,因为它们能够在输入功能的数量中参数化大小指数的复杂空间的区域。自从使用简单的一维网络的Pioneering作品[23,24]中,在物理学文献中被称为矩阵产品状态(MPS)[4,25],并且作为数值线性代数文献中的张量训练[18]最近的研究还研究了替代体系结构,包括树张量网络(TTN)[29,30]和预测的纠缠对状态(PEPS)[31,32]。但是,越来越多的情况张张网络似乎具有优势。存在张张量网络体系结构在某些情况下的神经网络的作用[33],但神经网络在多功能性和效率方面仍然占上风。首先,张量网络提供了一种压缩现有神经网络中使用的矩阵的方法。此过程称为张力,可减少存储模型所需的内存量,并提高模型在训练和推理中的效率[34]。在几项研究中已经探索了张力的潜力[34-36],它提供了一种在边缘计算设备中执行复杂模型的方法[37]。第二,量子网络中量子多体物理学的庞大专业知识及其在实际物理系统中的灵感,可以更好地理解与解释性有关的问题[29,38,39]。第三,这种专业知识还可以带来新颖的功能,例如保证不妥协模型性能的隐私[40]。最后,另一个有希望的研究线涉及张量的整合
摘要。目的:面部识别已成为人工智能研究中越来越有趣的领域。在这项研究中,本研究旨在探索通过TensorFlow实施的CNN的应用,以开发出强大的模型,以增强学生出勤系统中的面部识别精度。这项研究的重点是开发一个模型,该模型使用在计算机科学系的实习出勤记录中收集的多级学生图像中的多级学生图像中识别学生面孔。方法:包含19名学生的面部图像的数据集成为培训和验证CNN模型的基础。该数据集来自计算机科学系的实习记录,其中包括231张培训图像和59张验证图像。预处理阶段包括面部区域检测和分类,导致组织良好的数据集用于培训和验证。由七层组成的CNN体系结构经过精心设计,以实现最佳性能。结果:该模型表现出非凡的准确性,在300个训练时期后,验证数据集的93%达到了93%。精确度,召回和F1得分指标被跨不同类别进行详细评估,强调了该模型在准确地对面部图像进行分类方面的熟练程度。使用基于VGG-16的模型进行比较分析,展示了提出的CNN体系结构的优越性。此外,Web服务的实施证明了该模型的实际适用性,以少于0.3秒的出色响应时间提供准确的预测。新颖性:这项全面的研究不仅提高了面部识别技术,而且还提出了适用于现实情况的模型,尤其是在学生出勤系统中。关键字:面部识别,机器学习,深度学习,CNN于2024年5月 / 2024年5月修订 / 2024年5月接受,这项工作已根据创意共享归因4.0国际许可获得许可。