张量网络是将高维张量的因素化为较小张量的网络样结构。起源于凝结物理学,并以其有效表示量子多体系统的有效表示[1-10],这些结构允许重新搜索者理解此类系统的复杂属性,并使用经典计算机模拟它们[11-13]。值得注意的是,张量网络是模拟量子优势实验结果的最成功的方法[14-16]。此外,在数值线性代数群落中重新发现了张量网络[17-19],其中该技术已适应其他高维问题,例如数值整合[20],信号处理[21]或流行性模型[22]。随着机器学习的出现和寻求表达且易于培训的模型的追求,张量网络被认为是有前途的候选人,因为它们能够在输入功能的数量中参数化大小指数的复杂空间的区域。自从使用简单的一维网络的Pioneering作品[23,24]中,在物理学文献中被称为矩阵产品状态(MPS)[4,25],并且作为数值线性代数文献中的张量训练[18]最近的研究还研究了替代体系结构,包括树张量网络(TTN)[29,30]和预测的纠缠对状态(PEPS)[31,32]。但是,越来越多的情况张张网络似乎具有优势。存在张张量网络体系结构在某些情况下的神经网络的作用[33],但神经网络在多功能性和效率方面仍然占上风。首先,张量网络提供了一种压缩现有神经网络中使用的矩阵的方法。此过程称为张力,可减少存储模型所需的内存量,并提高模型在训练和推理中的效率[34]。在几项研究中已经探索了张力的潜力[34-36],它提供了一种在边缘计算设备中执行复杂模型的方法[37]。第二,量子网络中量子多体物理学的庞大专业知识及其在实际物理系统中的灵感,可以更好地理解与解释性有关的问题[29,38,39]。第三,这种专业知识还可以带来新颖的功能,例如保证不妥协模型性能的隐私[40]。最后,另一个有希望的研究线涉及张量的整合
主要关键词