Loading...
机构名称:
¥ 1.0

人们对由相对少量相互作用的神经元组成的各种集合和大型神经形态系统进行了研究 [1±6]。在《Physics Uspekhi》中,许多综述介绍了使用非线性物理方法研究大脑和神经集合中的动态过程的相关主题 [7±18]。最近,对工作大脑的认知和功能特性进行建模已经成为神经动力学的前沿 [19±21]。尤其是,人们对这一主题越来越感兴趣,这与创建能够重现自然智能关键特性的人工智能系统有关 [22, 23]。为了解决这类问题,有必要建立新的动态模型,这些模型首先可以重现复杂的层次组织,其次可以重现神经元结构的可塑性,因为它们的组成以及结构之间和结构内的连接会根据信息输入的存在与否而变化。迄今为止,已经开发出两种动态建模方法 [24, 25]。其中一种方法是所谓的自上而下的方法,模型采用大脑活动模式——模拟大脑高级过程的积分变量 [20]。另一种方法自下而上,对于可以重现大脑高级功能的神经结构模型,首先,基于对神经元和结构之间连接的真实描述,建立单个神经元的模型 [25, 26]。显然,这两种方法的生物学相关模型都应该基于实验数据。在神经生理学家对大脑进行的实验研究中,神经元的活动是在受试者休息时或受试者执行某项任务时记录的。基于实验数据的模型可以通过两种方式开发。第一种是数据驱动建模,即重建一个动态系统,该系统产生的时间序列在数量上接近实验记录的时间序列。第二种方式是基于所考虑的行为问题建模,即

循环脉冲神经网络的非线性动力学与机器学习

循环脉冲神经网络的非线性动力学与机器学习PDF文件第1页

循环脉冲神经网络的非线性动力学与机器学习PDF文件第2页

循环脉冲神经网络的非线性动力学与机器学习PDF文件第3页

循环脉冲神经网络的非线性动力学与机器学习PDF文件第4页

循环脉冲神经网络的非线性动力学与机器学习PDF文件第5页

相关文件推荐

2023 年
¥2.0
2023 年
¥18.0
1900 年
¥1.0
2023 年
¥1.0
2024 年
¥33.0
2024 年
¥1.0
2010 年
¥2.0
2013 年
¥1.0