Loading...
机构名称:
¥ 2.0

几十年来,大脑研究一直致力于解读大脑在发育、疾病和健康状态下的状态,以了解正常和异常的大脑功能。神经科学的当前趋势是使用自然刺激,旨在了解现实世界中的大脑功能,在此期间,感觉、认知、情感和运动大脑过程相互重叠(Sonkusare 等人,2019 年 [1];Cantlon,2020 年 [2];Nastase 等人,2020 年 [3];Zhang 等人,2021 年 [4])。自然刺激意味着复杂、动态和多样化的刺激,与传统使用的还原刺激相比,它为大脑研究创造了更具生态相关性的条件(Cantlon,2020 年 [2];Zhang 等人,2021 年 [4])。自然刺激的例子有电影、课堂生物学、视频游戏、复杂的数学或听现场管弦乐队(Hasson 等人,2004 年 [5];Dikker 等人,2017 年 [6];Bavelier 和 Green [7],2019 年;Chabin 等人,2022 年 [8];Poikonen 等人,2022 年 [9])。在自然刺激期间长时间收集的连续脑成像数据使得数据驱动分析的应用成为可能(Cantlon,2020 年 [2];Zhang 等人,2021 年 [4])。机器学习 (ML) 分析可能有助于产生关于潜在任务相关大脑过程的新假设,尤其是在自然背景下。在这种情况下,几个低级和高级重叠的大脑过程同时发生(Nastase 等人,2020 年 [3])。由于多种大脑过程具有重叠性,基于还原论和简化研究设计而形成的神经科学理论的扩展既具有挑战性又值得怀疑 (Cantlon,2020 年 [2])。需要分析自然数据的新方法,而数据驱动的智能方法是开发和测试现实世界中大脑功能新理论的良好候选者 (Nastase 等人,2020 年 [3])。机器学习的最新发展已经应用于医疗保健领域,并扩展到多个领域:癫痫​​中的峰值检测、痴呆症预测以及心理健康和睡眠阶段分类 (Singh 等人,2022 年 [10])。这些数据驱动的方法旨在通过在生命早期解决大脑护理问题来改变医疗保健服务并改变大脑健康的轨迹 (Singh 等人,2022 年 [10])。例如,利用机器学习的最新进展,特别是脑机接口 (BCI) 技术,可帮助中风患者恢复神经系统

高性能非线性和机器学习分析...

高性能非线性和机器学习分析...PDF文件第1页

高性能非线性和机器学习分析...PDF文件第2页

高性能非线性和机器学习分析...PDF文件第3页

高性能非线性和机器学习分析...PDF文件第4页

高性能非线性和机器学习分析...PDF文件第5页

相关文件推荐

2021 年
¥1.0
2023 年
¥1.0