雷达在恶劣天气下的稳健性和提供动态信息的能力使其成为高级驾驶辅助系统 (ADAS) 中摄像头和激光雷达的宝贵补充 [1]。尽管用于 RGB 图像和激光雷达点云 (PC) 的语义分割深度学习方法已经很成熟,但它们在雷达中的应用仍未得到充分探索,尤其是包含额外海拔信息的 4D 雷达数据 [2] [3] [4] [5]。本文通过提出一种直接在距离-方位角-海拔-多普勒 (RAED) 张量上执行语义分割的方法来解决这一研究空白。此外,还引入了一种新颖的自动标记流程来在 RaDelft 数据集中生成逐点多类标签,从而实现使用雷达数据的联合检测和分类。
磁共振成像 (MRI) 是一种多功能医学成像方式,可在软组织之间提供出色的对比度。可以调整采集参数,以使这种对比度对各种组织特性敏感,例如质子密度以及纵向和横向弛豫时间(分别为 T 1 和 T 2 )。MRI 采集包括使用各种电磁脉冲反复激发人体内质子,并从图像中获取少量傅里叶样本。然后通过逆傅里叶变换运算将频域中的观测值重铸到空间域。典型的 MRI 数据包括任意方向的 2D 或 3D 图像。后者具有两个平面内空间维度和切片方向的第三个空间维度,因此它们可以看作张量。然而,MRI 的采集时间相对较慢,通常需要几分钟的时间。这种技术限制会阻碍 3D 高分辨率图像的采集。为了避免这个缺点,超分辨率技术已被证明在许多情况下是有效的 [1],[2],[3]。它们包括从一个或多个低分辨率观测中恢复 3D 高分辨率图像。最近,有人提出使用深度学习从单个低分辨率观测中恢复高分辨率图像 [4],[5]。然而,对于小病变,最好考虑多个观测以用于图像的诊断。这些观测可以合并到融合模型中,从而提供比单独处理更多的信息 [6]。使用融合范式避免了依赖外部患者数据库来获取先验信息。因此,在剩下的文章中,我们将重点关注从多个观测中进行超分辨率重建的问题,也称为多帧超分辨率。
过程张量矩阵积算子 (PT-MPO) 能够对空前广泛的开放量子系统进行精确的数值模拟。通过以 MPO 形式表示环境影响,可以使用已建立的算法对其进行有效压缩。压缩的 PT-MPO 内键的维度可以看作是环境复杂性的指标。在这里,我们表明,内键本身(而不仅仅是其维度)具有具体的物理意义:它们表示全环境刘维尔空间的子空间,该子空间承载着可能对后续开放量子系统动力学影响最大的环境激发。这种联系可以用有损线性变换来表示,其伪逆有助于提取环境可观测量。我们通过提取中心自旋问题的环境自旋、耦合到两个引线的量子系统的电流、从量子发射器发射到结构化环境中的光子数量以及驱动非马尔可夫量子系统中总吸收能量在系统、环境和相互作用能量项中的分布来证明这一点。数值测试进一步表明,不同的 PT-MPO 算法将环境压缩到相似的子空间。因此,PT-MPO 内部键的物理解释既提供了概念上的理解,也使新的实际应用成为可能。
摘要 - 在有镜的物理学的背景下开发的调整网络试图近似阶列量 - 自由度降低,而自由度降低,仅在n中仅是多项式的,并作为部分合成的较小张量的网络排列。正如我们最近在量子多体物理学的背景下所证明的那样,通过对此类网络中张量的规范多核(CP)等级对张力的构成施加约束,可以进一步降低计算成本[ARXIV:2205.15296]。在这里,我们演示了如何在机器学习中使用具有CP等级约束和张量液位的树张量网络(TTN)。该方法在时尚 - mnist图像分类中的表现优于其他基于张量的基于网络的方法。分支比b = 4的低级TTN分类器达到90.3%的测试集精度,计算成本低。主要由线性元素组成,张量网络分类器避免了深度神经网络的消失梯度问题。CP等级约束具有额外的优点:可以更自由地减少参数的数量,以控制过度拟合,改善概括属性并降低计算成本。他们允许我们使用具有较高分支比率的树木,从而大大提高了表示能力。
张量高斯图模型 (GGM) 可以解释张量数据中的条件独立结构,在许多领域都有重要应用。然而,由于获取成本高,单个研究中可用的张量数据往往有限。虽然相关研究可以提供额外的数据,但如何汇集这些异构数据仍是一个悬而未决的问题。在本文中,我们提出了一个张量 GGM 的迁移学习框架,该框架充分利用了信息辅助域,即使存在非信息辅助域,也能从精心设计的数据自适应权重中受益。我们的理论分析表明,通过利用辅助域的信息,在非常宽松的条件下,目标域上的估计误差和变量选择一致性得到了显着改善。在合成张量图和大脑功能连接网络数据上进行了广泛的数值实验,证明了所提出方法的令人满意的性能。关键词:大脑功能连接、高斯图模型、精度矩阵、张量数据、迁移学习。
从更基本的量子引力理论中产生局部有效理论,该理论似乎具有更少的自由度,这是理论物理学的一个主要难题。解决该问题的最新方法是考虑与这些理论相关的希尔伯特空间映射的一般特征。在这项工作中,我们从这种非等距映射构建了近似局部可观测量或重叠量子比特。我们表明,有效理论中的局部过程可以用具有更少自由度的量子系统来欺骗,与实际局部性的偏差可以识别为量子引力的特征。举一个具体的例子,我们构建了两个德西特时空的张量网络模型,展示了指数扩展和局部物理如何在崩溃之前被欺骗很长一段时间。我们的结果强调了重叠量子比特、希尔伯特空间维度验证、黑洞中的自由度计数、全息术和量子引力中的近似局部性之间的联系。
优化的量子控制可以提高量子计量的性能和抗噪能力。然而,当多个控制操作顺序应用时,优化很快就会变得难以处理。在这项工作中,我们提出了有效的张量网络算法来优化通过一长串控制操作增强的量子计量策略。我们的方法涵盖了一种普遍而实用的场景,其中实验者在要估计的通道的 N 个查询之间应用 N - 1 个交错的控制操作,并且不使用或使用有界辅助。根据不同的实验能力,这些控制操作可以是通用量子通道或变分酉门。数值实验表明,我们的算法在优化多达 N = 100 个查询的计量策略方面具有良好的性能。具体来说,我们的算法确定了一种在 N 有限但很大的情况下能够胜过最先进策略的策略。
显微镜和宏观水平的压力张量(相当于负应力张量)都是工程和科学的许多方面,包括流体动力学,固体力学,生物物理学和热力学。从这个角度来看,我们回顾了计算微观压力张量的方法。建立了平衡和非质量系统的不同压力形式之间的连接。我们还指出了该领域的几个挑战,包括有关微观压力张量定义的历史争议;具有多体和远程电位的困难;软件和综合工具的不足;以及缺乏探测纳米级压力张量的实验途径。建议未来的方向。
随着量子硬件的快速发展,量子电路的高效模拟已变得不可或缺。主要的模拟方法基于状态向量和张量网络。随着目前量子器件中量子比特和量子门的数量不断增加,传统的基于状态向量的量子电路模拟方法由于希尔伯特空间的庞大和广泛的纠缠而显得力不从心。因此,野蛮的张量网络模拟算法成为此类场景下的唯一可行解决方案。张量网络模拟算法面临的两个主要挑战是最优收缩路径寻找和在现代计算设备上的高效执行,而后者决定了实际的效率。在本研究中,我们研究了此类张量网络模拟在现代 GPU 上的优化,并从计算效率和准确性两个方面提出了通用的优化策略。首先,我们提出将关键的爱因斯坦求和运算转化为 GEMM 运算,利用张量网络模拟的具体特性来放大 GPU 的效率。其次,通过分析量子电路的数据特性,我们采用扩展精度保证模拟结果的准确性,并采用混合精度充分发挥GPU的潜力,使模拟速度更快、精度更高。数值实验表明,在Sycamore的18周期情况下,我们的方法可以将随机量子电路样本的验证时间缩短3.96倍,在一台A100上持续性能超过21 TFLOPS。该方法可以轻松扩展到20周期的情况,保持相同的性能,与最先进的基于CPU的结果相比加速12.5倍,与文献中报道的最先进的基于GPU的结果相比加速4.48-6.78倍。此外,本文提出的策略对
过程张量是量子梳,描述开放量子系统通过多个量子动力学步骤的演化。虽然有多种方法可以测量两个过程的差异,但必须特别注意确保量词遵循物理上可取的条件,例如数据处理不等式。在这里,我们分析了量子梳一般应用中常用的两类可区分性度量。我们表明,第一类称为 Choi 散度,不满足重要的数据处理不等式,而第二类称为广义散度,满足。我们还将量子信道广义散度的一些其他相关结果扩展到量子梳。最后,鉴于我们证明的性质,我们认为广义散度可能比 Choi 散度更适合在大多数应用中区分量子梳。特别是,这对于定义具有梳状结构的资源理论的单调性至关重要,例如量子过程的资源理论和量子策略的资源理论。