过程张量矩阵积算子 (PT-MPO) 能够对空前广泛的开放量子系统进行精确的数值模拟。通过以 MPO 形式表示环境影响,可以使用已建立的算法对其进行有效压缩。压缩的 PT-MPO 内键的维度可以看作是环境复杂性的指标。在这里,我们表明,内键本身(而不仅仅是其维度)具有具体的物理意义:它们表示全环境刘维尔空间的子空间,该子空间承载着可能对后续开放量子系统动力学影响最大的环境激发。这种联系可以用有损线性变换来表示,其伪逆有助于提取环境可观测量。我们通过提取中心自旋问题的环境自旋、耦合到两个引线的量子系统的电流、从量子发射器发射到结构化环境中的光子数量以及驱动非马尔可夫量子系统中总吸收能量在系统、环境和相互作用能量项中的分布来证明这一点。数值测试进一步表明,不同的 PT-MPO 算法将环境压缩到相似的子空间。因此,PT-MPO 内部键的物理解释既提供了概念上的理解,也使新的实际应用成为可能。
主要关键词