其中 ρ 是量子态,U ∈ U ( H ) ,φ U 表示每个单调度量张量 G 的等距同构,因为在代表经典粗粒化量子版本的完全正、保迹映射下,单调性是必须的 [ 35 , 40 ]。从无穷小角度来看,作用量 φ 可以用 S + 上的基本矢量场来描述,从而提供酉群李代数 u ( H ) 的反表示。这些矢量场用 X b 表示,其中 b 是 H 上的埃尔米特算子(第 2 节将对此进行详细介绍),对于所有单调度量张量来说,它们都是 Killing 矢量场,因为 U ( H ) 通过等距同构起作用。现在,李代数 u(H) 是 H 上有界线性算子空间 B(H) 的李子代数,具有由线性算子之间的交换子 [·,·] 给出的李积。特别地,可以证明 B(H)(具有 [·,·])同构于 U(H) 复数化的李代数,即 H 上由可逆线性算子组成的李群 GL(H) 的李代数。此外,已知 [9,15,26,27] GL(H) 作用于流形 S + ,更一般地作用于整个量子态空间 S ,根据
摘要 我们为张量网络状态的参数族设计量子压缩算法。我们首先建立存储给定状态族中的任意状态所需的内存量的上限。该上限由合适流网络的最小割确定,并与从指定状态的参数流形到状态所体现的物理系统的信息流有关。对于给定的网络拓扑和给定的边维度,当所有边维度都是同一整数的幂时,我们的上限是严格的。当不满足此条件时,该上限在乘法因子小于 1.585 时是最佳的。然后,我们为一般状态族提供了一种压缩算法,并表明该算法对于矩阵乘积状态在多项式时间内运行。
摘要 — 张量分解为因子矩阵,通过核心张量相互作用,在信号处理和机器学习中得到了广泛的应用。到目前为止,将数据表示为 2 阶或 3 阶子张量的有序网络的更通用的张量模型尚未在这些领域得到广泛考虑,尽管这种所谓的张量网络 (TN) 分解在量子物理和科学计算中已经得到了长期研究。在本文中,我们介绍了 TN 分解的新算法和应用,特别关注张量序列 (TT) 分解及其变体。为 TT 分解开发的新算法在每次迭代中以交替方式更新一个或多个核心张量,并表现出对大规模数据张量的增强的数学可处理性和可扩展性。为了严格起见,给定秩、给定近似误差和给定误差界限的情况都被考虑在内。所提出的算法提供了均衡的 TT 分解,并在单一混合盲源分离、去噪和特征提取的经典范例中进行了测试,与广泛使用的 TT 分解截断算法相比,取得了更优异的性能。
过程张量矩阵积算子 (PT-MPO) 能够对空前广泛的开放量子系统进行精确的数值模拟。通过以 MPO 形式表示环境影响,可以使用已建立的算法对其进行有效压缩。压缩的 PT-MPO 内键的维度可以看作是环境复杂性的指标。在这里,我们表明,内键本身(而不仅仅是其维度)具有具体的物理意义:它们表示全环境刘维尔空间的子空间,该子空间承载着可能对后续开放量子系统动力学影响最大的环境激发。这种联系可以用有损线性变换来表示,其伪逆有助于提取环境可观测量。我们通过提取中心自旋问题的环境自旋、耦合到两个引线的量子系统的电流、从量子发射器发射到结构化环境中的光子数量以及驱动非马尔可夫量子系统中总吸收能量在系统、环境和相互作用能量项中的分布来证明这一点。数值测试进一步表明,不同的 PT-MPO 算法将环境压缩到相似的子空间。因此,PT-MPO 内部键的物理解释既提供了概念上的理解,也使新的实际应用成为可能。
Ulrich Schollwoeck:用于真实材料的张量网络。张量网络已成为量子多体理论中不可或缺的工具,但主要应用于模型系统。在本次演讲中,我将介绍如何将张量网络与量子嵌入理论(例如动态平均场理论和密度泛函理论)相结合,从而获得迄今为止无法获得的真实材料的结果。我还将展示如何在复平面上使用时间演化的进展将如何为以非常有效的方式计算极低频率特性开辟道路。 Henrik Larsson:用于计算振动和电子状态的张量网络状态 电子结构和振动量子动力学领域大多彼此独立,它们开发了强大的方法来精确求解薛定谔方程。特别是,将高维波函数分解为较小维度函数的复杂收缩的方法引起了广泛关注。它们为这两个领域的具有挑战性的量子系统带来了令人印象深刻的应用。虽然底层的波函数表示、张量网络状态非常相似,但用于求解电子和振动运动的薛定谔方程的算法却大不相同。目前尚无对不同方法的优缺点进行系统的比较,但这将有助于更好地理解和有益的思想交流。本文首次尝试了这一方向 [1,2]。
我们进行了PubMed搜索,以发现2010年1月至2019年12月之间发表的148篇论文,与人脑,扩散张量成像(DTI)和机器学习(ML)有关。研究着重于健康人群(n = 15),精神健康疾病(n = 25),肿瘤(n = 19),创伤(n = 5),痴呆症(n = 24),发育障碍(n = 5),运动障碍,运动障碍(n = 9),其他神经逻辑疾病(n = 27),不及格疾病(n = 27),不及格疾病,否则不及格; 7),以及上述类别的多种组合(n = 12)。 使用来自DTI信息的信息对患者进行分类是最常见的(n = 114)进行的ML应用。 研究的显着数字(n = 93)使用了支持向量机(SVM)作为分类的ML模型的首选选择。 近年来(2018-2019)出版物的一部分(31/44)继续使用SVM,支持向量回归和随机森林,这些森林是传统ML的一部分。 尽管进行了各种健康状况(包括健康)的许多类型的应用,但大多数研究都是基于小的同胞(小于100),并且没有对测试集进行独立/外部验证。研究着重于健康人群(n = 15),精神健康疾病(n = 25),肿瘤(n = 19),创伤(n = 5),痴呆症(n = 24),发育障碍(n = 5),运动障碍,运动障碍(n = 9),其他神经逻辑疾病(n = 27),不及格疾病(n = 27),不及格疾病,否则不及格; 7),以及上述类别的多种组合(n = 12)。分类是最常见的(n = 114)进行的ML应用。研究的显着数字(n = 93)使用了支持向量机(SVM)作为分类的ML模型的首选选择。近年来(2018-2019)出版物的一部分(31/44)继续使用SVM,支持向量回归和随机森林,这些森林是传统ML的一部分。尽管进行了各种健康状况(包括健康)的许多类型的应用,但大多数研究都是基于小的同胞(小于100),并且没有对测试集进行独立/外部验证。
该研究的相关性在于需要通过利用从常规1.5 Tesla MRI扫描仪获得的扩散张量成像(DTI)来改善肌萎缩性侧索硬化症(ALS)的诊断。这项研究旨在研究使用不同机器学习(ML)分类器以区分ALS个体的潜力。In this study, five ML classifiers (“support vector machine (SVM)”, “k-nearest neighbors (K-NN)”, naïve Bayesian classifier, “decision tree”, and “decision forest”) were used, based on two DTI parameters: fractional anisotropy and apparent diffusion coefficient, obtained from two manually selected ROIs at the level of the brain pyramids in 47 ALS患者和55名健康受试者。使用混淆矩阵和ROC曲线评估每个分类器的质量。通过径向内核支持矢量方法(77%的精度[P = 0.01])证明了基于DTI数据的ALS患者与健康个体的最高准确性,而K-NN和“决策树”分类器的性能略低,“决策林”分类器对训练的训练量过高(AUC = 1)。作者在检测锥体区域中ALS的放射学特征方面表现出足够准确的ML分类器“ SVM”。
张量高斯图模型 (GGM) 可以解释张量数据中的条件独立结构,在许多领域都有重要应用。然而,由于获取成本高,单个研究中可用的张量数据往往有限。虽然相关研究可以提供额外的数据,但如何汇集这些异构数据仍是一个悬而未决的问题。在本文中,我们提出了一个张量 GGM 的迁移学习框架,该框架充分利用了信息辅助域,即使存在非信息辅助域,也能从精心设计的数据自适应权重中受益。我们的理论分析表明,通过利用辅助域的信息,在非常宽松的条件下,目标域上的估计误差和变量选择一致性得到了显着改善。在合成张量图和大脑功能连接网络数据上进行了广泛的数值实验,证明了所提出方法的令人满意的性能。关键词:大脑功能连接、高斯图模型、精度矩阵、张量数据、迁移学习。