Bozorgmehry Boozarjomehry,G。(2025)。通过模仿学习和强化学习工程设计自动化(硕士论文,加拿大卡尔加里大学,卡尔加里大学)。从https://prism.ucalgary.ca检索。
我们为不依赖于人类反馈的大型语言模型(LLMS)提出了一种新颖的增强学习(RL)框架。相反,我们的方法使用模型本身中的交叉注意信号来获得自我监督的奖励,从而指导对模型策略的迭代微调。通过分析模型在生成过程中如何“参加”输入提示,我们构建了及时的覆盖,重点和连贯性的度量。然后,我们使用这些措施来对候选响应进行排名或评分,提供了奖励信号,鼓励模型产生良好的一致,主题文本。在与标准策略梯度方法的经验比较和合成偏好模型的RL微调中,我们的方法在非RL基线的迅速相关性和一致性方面显示出显着的提高。虽然它尚未与完全监督的RLHF系统的性能相匹配,但它突出了使用最小的人类标记来扩展对齐的重要方向。我们提供了详细的分析,讨论潜在的局限性,并概述了将基于跨注意的信号与较少人类反馈相结合的未来工作。
电气和电子工程师协会 › iel7 作者 VHL Lopes · 2022 · 被引用 1 — 作者 VHL Lopes · 2022 被引用 1 与信道建模和仿真相关,特别关注... 采用的块结构可以表示标准的多帧组织。 17 页
中链甘油三酯)、改性玉米淀粉、大豆油、椰子油、M. Alpina 油*、Schizochytrium Sp.油†、L-酪氨酸、L-亮氨酸、单甘油酯、M-肌醇、L-色氨酸、结冷胶、L-肉碱、叶黄素、矿物质(磷酸三钙、氯化镁、柠檬酸钾、氢氧化钾、柠檬酸钠、氯化钾、硫酸锌、硫酸亚铁、硫酸铜、硫酸锰)、维生素(抗坏血酸、氯化胆碱、烟酰胺、D-α-生育酚乙酸酯、D-泛酸钙、维生素 A 棕榈酸酯、盐酸硫胺素、盐酸吡哆醇、核黄素、维生素 D3、叶酸、D-生物素、叶绿醌、亚硒酸钠、β-胡萝卜素、氰钴胺素)和需要:磷酸二氢钾。 * ARA 的来源。
小麦的复杂进化史已经塑造了其相关的根微生物群落。但是,考虑农业强化的影响是有限的。这项研究调查了内源性(基因组多倍体化)和外源性(化肥的引入)因素如何形成有益根瘤菌的选择。,我们结合了与培养的依赖性和依赖性方法,分析根瘤菌群落组成及其在根 - 土壤界面上的相关功能,来自一系列祖先和现代小麦基因型,随着和不添加化学肥料而生长。在受控的盆栽实验中,受精和土壤室(根际,根茎)是塑造根瘤菌群落组成的主要因素,而小麦基因组从二倍体到异源倍倍倍化植物的扩展导致了下一个最大的变化。根茎衍生的可培养的细菌收集植物生长促进(PGP)的特征表明,施肥会降低大多倍小麦中假定的植物生长促进性根瘤菌的丰度,但在野生小麦祖细胞中没有。这些分离株的分类学分类表明,这些差异在很大程度上是由代表多倍体小麦中细菌杆菌的有益根细菌选择的选择驱动的。此外,与二倍体野生小麦相比,六倍小麦有益细菌种群的复杂性大大降低。因此,我们建议以肥料依赖性的方式驯化与PGP功能的根相关细菌属可能会受到损害,这是指导未来的植物育种计划的潜在至关重要的发现,以在不断变化的环境中改善作物生产系统。
本文分析了在线增强学习算法的复杂性,即Q学习和价值意识的异步实时版本,应用于确定性域中达到目标状态的问题。先前的工作得出的结论是,在许多情况下,Tabula Rasa强化学习是针对此类问题的指定的,或者只有在增强学习算法时才可以处理。我们表明,相反,算法是可以处理的,而任务表示或初始化的模拟更改。我们在最坏情况的复杂性上提供了紧密的界限,并显示出复杂性是如何较小的,如果系统性学习算法对状态空间或域具有某些特殊属性的初始了解。我们还提出了一种新颖的双向Q学习算法,以从所有状态到目标状态找到最佳路径,并表明它不比其他算法更复杂。
大规模的基础设施系统对社会欢迎至关重要,其有效管理需要造成各种复杂性的战略前提和干预方法。我们的研究解决了涉及下水道资产的预后和健康管理(PHM)框架内的两个挑战:对跨严重水平的管道降解并制定有效的维护政策。我们采用多州降解模型(MSDM)来代表下水道管道中的随机降解过程,并使用深度加固学习(DRL)来制定维护策略。荷兰下水道网络的案例研究例证了我们的方法论。我们的发现证明了该模型在产生超过启发式方法的智能,节省成本的维护策略方面的效率。它根据管道的年龄来调整其管理策略,选择一种被动方法,用于新的管道,并过渡到较老的策略,以防止失败和降低成本。这项研究高光DRL在优化维护政策方面的潜力。未来的研究将通过合并部分可观察性,探索各种强化学习算法并将这种方法扩展到全面的基础架构管理,以改善模型。