大规模的基础设施系统对社会欢迎至关重要,其有效管理需要造成各种复杂性的战略前提和干预方法。我们的研究解决了涉及下水道资产的预后和健康管理(PHM)框架内的两个挑战:对跨严重水平的管道降解并制定有效的维护政策。我们采用多州降解模型(MSDM)来代表下水道管道中的随机降解过程,并使用深度加固学习(DRL)来制定维护策略。荷兰下水道网络的案例研究例证了我们的方法论。我们的发现证明了该模型在产生超过启发式方法的智能,节省成本的维护策略方面的效率。它根据管道的年龄来调整其管理策略,选择一种被动方法,用于新的管道,并过渡到较老的策略,以防止失败和降低成本。这项研究高光DRL在优化维护政策方面的潜力。未来的研究将通过合并部分可观察性,探索各种强化学习算法并将这种方法扩展到全面的基础架构管理,以改善模型。
我们考虑在马尔可夫决策过程中学习,在马尔可夫决策过程中,我们没有明确地赋予重新功能,但是我们可以在这里遵守专家,以展示我们想学习的任务。此设置在应用程序(例如驾驶任务)中很有用,很难写下明确的奖励功能,以准确地指定应如何交易不同的desiderata。我们认为专家试图最大程度地发挥奖励功能,该奖励功能可作为已知功能的线性组合,并给出了一种学习专家所展示的任务的算法。我们的al-gorithm基于使用“逆增强学习”来试图恢复未知的奖励功能。我们表明,我们的算法终止了少数迭代,即使我们可能永远无法恢复专家的奖励功能,算法的策略也将达到与专家接近的绩效,在此,在此,相对于Expt exptt的未知奖励函数,在这里可以衡量。
中链甘油三酯)、改性玉米淀粉、大豆油、椰子油、M. Alpina 油*、Schizochytrium Sp.油†、L-酪氨酸、L-亮氨酸、单甘油酯、M-肌醇、L-色氨酸、结冷胶、L-肉碱、叶黄素、矿物质(磷酸三钙、氯化镁、柠檬酸钾、氢氧化钾、柠檬酸钠、氯化钾、硫酸锌、硫酸亚铁、硫酸铜、硫酸锰)、维生素(抗坏血酸、氯化胆碱、烟酰胺、D-α-生育酚乙酸酯、D-泛酸钙、维生素 A 棕榈酸酯、盐酸硫胺素、盐酸吡哆醇、核黄素、维生素 D3、叶酸、D-生物素、叶绿醌、亚硒酸钠、β-胡萝卜素、氰钴胺素)和需要:磷酸二氢钾。 * ARA 的来源。
张量网络方法已从基于基于基质产物状态的变异技术进行了发展,能够计算一维冷凝的晶格模型的特性到源自更精致状态的方法,例如旨在模拟二维模型物理学的预测纠缠对状态。在这项工作中,我们提倡范式,即对于二维费米子模型,矩阵 - 产品态仍然适用于比直接嵌入一维系统允许的明显更高的精度水平。为此,我们利用了费米子模式转换的方案,并克服了一维嵌入需要是局部的偏见。这种方法认真对待洞察力,即对矩阵态的多种形式和模式转换的单一多种流形,可以更准确地捕获自然相关结构。通过证明新兴模式中残留的低水平纠缠水平,我们表明矩阵态可以很好地描述基态。通过研究晶格尺寸的无旋转费用的相变高达10×10,该方法的功率被例证了。
摘要 - 深处增强学习(RL)已经获得了自动在现代芯片设计中生成位置的人口。但是,这些RL模型产生的平面图的视觉样式与手动布局的样式大不相同,因为RL垫片通常只采用诸如Wirelength和Routing Expestion之类的指标作为增强学习的奖励,而忽略了人类专家的复杂且细腻的布局经验。在本文中,我们提出了一个安置得分手,以评估布局的质量,并将异常检测应用于地板计划。此外,我们将该得分手的输出添加为加强安置过程的奖励的一部分。ISPD 2005基准的实验结果表明,我们提出的放置质量得分手可以根据人类工艺风格有效地评估布局,并且将此得分手添加到增强式学习奖励中,有助于与以前的电路设计相比,用更短的线长度生成较短的线长度。索引术语 - 地板,加固倾斜,异常检测,放置得分手
- 培训语言模型以人为反馈的指示 - 直接偏好优化:您的语言模型是秘密的奖励模型 - 精细的人类反馈为语言模型培训提供了更好的奖励 - 开放问题和从人类反馈>的强化基本限制
离线增强学习(RL)旨在根据历史数据改善目标政策而不是行为政策。离线RL的一个主要问题是分配转移导致Q值估计的分布转移。大多数现有的作品都集中在行为克隆(BC)或最大化Q学习方法以抑制分布转移。BC方法试图通过将目标策略限制为离线数据来减轻转移,但它使学习的策略高度保守。另一方面,最大化Q学习方法采用悲观的机制来通过根据动作的不确定性来最大化Q值和惩罚Q值来产生动作。但是,生成的措施可能是算法的,从而导致预测的Q值高度不确定,这反过来又将误导该策略以生成下一个动作。为了减轻分配转移的不利影响,我们建议通过统一Q学习和行为克隆以应对探索和剥削难题来隐含和明确地限制政策。对于隐式约束方法,我们建议通过致力于使目标策略和行为策略的行动无法区分的生成对抗网络统一行动空间。对于显式约束方法,我们会提出多重重要性采样(MIS),以了解每个状态行动对的优势权重,然后将其用于抑制或充分使用每个状态行动对。D4RL数据集上的广泛实验表明,我们的方法可以实现出色的性能。MAZE2D数据上的结果表明,MIS与单个重要性采样更好地解决了异质数据。我们还发现MIS可以有效地稳定奖励曲线。关键字:Q学习,行为克隆,悲观机制,多重重要性采样。
van der waals异质结构中的Moiré超级晶格代表了高度可调的量子系统,在多体模型和设备应用中都引起了极大的兴趣。然而,在室温下,Moiré电位对光物质相互作用的影响在很大程度上仍然没有。在我们的研究中,我们证明了MOS 2 /WSE 2中的Moiré潜力促进了室温下层间激子(IX)的定位。通过执行反射对比光谱,我们证明了原子力显微镜实验支持的原子重建在修饰内部激子中的重要性。降低扭转角时,我们观察到IX寿命会更长,并且发光增强,表明诸如缺陷之类的非辐射衰减通道被Moiré电位抑制。此外,通过将Moiré超晶格与硅单模腔的整合,我们发现,使用Moiré捕获的IXS的设备显示出明显较低的阈值,与利用DelaCalized IXS的设备相比,较小的一个数量级。这些发现不仅鼓励在升高温度下在Moiré超晶格中探索多体物理学,而且还为利用光子和光电应用中的这些人工量子材料铺平了道路。
