摘要:乘车共享中的核心问题是设计合理的算法以匹配驱动程序和Pasengers。受到各种约束的影响,例如在现实世界中的天气,流量和供应按需动态,需要优化多个目标,例如总平台收入和乘客等待时间。由于其在约束和优化目标方面的复杂性,乘车共同的匹配问题成为移动运输领域的核心问题。但是,现有的研究缺乏对驾驶员收入公平性的探索,并且某些算法实际上不适用于工业环境。为了解决这些缺点,我们开发了一种面向公平的动态匹配算法,用于乘车共享,有效地优化了驾驶员之间的总体平台效率(预期的总驾驶员收入)和收入公平(驱动程序之间加权摊销公平信息的熵)。首先,我们在场景设置中引入了匹配结果对随后匹配的时间依赖性,并使用了强化学习来预测这些时间依赖性,克服了仅依赖历史数据和当前情况下订单分配的传统匹配算法的限制。然后,我们实施了一系列优化解决方案,包括引入时间窗口匹配模型,修剪操作和度量表示调整,以增强算法的适应性和大型数据集的可伸缩性。这些解决方案还确保该算法的效率。最后,在实际数据集上进行的实验表明,基于强化学习的公平性算法分别在公平,平台效用和匹配效率方面,比传统算法相比,改善了81.4%,28.5%和79.7%。
主要关键词