马萨诸塞州格洛斯特——格洛斯特是大开普安地区的重要经济支柱,面临着与马萨诸塞州门户城市类似的挑战,包括确保所有居民都能访问并充分利用在线环境。为了应对这一挑战,格洛斯特市(特别是索耶免费图书馆和市政 IT 部门)一直在与大都会区规划委员会 (MAPC) 合作制定格洛斯特的第一个数字公平计划。该计划是社区如何解决数字鸿沟的路线图,通过帮助缺乏连接的居民更好地访问互联网并获得充分参与数字和日常生活所需的设备和数字技能。格洛斯特市议会于 2024 年 12 月 10 日星期二听取了有关数字公平计划的报告。
减轻对亚群体的歧视。1 人们可能倾向于认为,只需从决策支持系统中省略敏感属性也能解决公平问题。然而,这是一个常见的误解:一些非敏感属性充当了代理(例如,工资是性别的代理,邮政编码是民族的代理,家庭结构是种族或宗教的代理),因此,即使不了解敏感属性的决策支持系统也被认为是不公平的。本文的目的是向信息系统从业者和研究人员介绍“公平的人工智能”。如上所述,信息系统内有多个领域容易出现不公平现象。事实上,信息系统维持甚至强化了人工智能中现有的不公平现象,而不是减轻它。在依赖这样的信息系统时,企业和组织面临着巨大的法律风险。在这方面,世界各地的立法机构都在实施法律,禁止在算法决策中进行差别对待(White & Case 2017);例如,在美国,公平贷款法对风险评分中的算法偏见进行惩罚,而在欧盟,人工智能的责任由通用数据保护条例(GDPR)强制执行。因此,实现公平的人工智能对于歧视的潜在受害者和依赖人工智能进行决策支持系统的机构都至关重要。最近的报告指出,企业、组织和政府对公平人工智能的采用已经落后(AI Now Institute 2018)。正如我们稍后讨论的,这种进展缓慢的潜在原因在于信息系统的所有维度,即人(例如信任)、技术(例如设计原则、经济影响)和组织(例如治理)。在以下章节中,本文将回顾公平的理论概念,将它们与人工智能的公平性联系起来,并为信息系统研究提出建议。
我们保卫世界上最伟大的国家——一个建立在为所有人提供机会的承诺之上的民主国家。这个国家的人口结构与我们生活的环境相似——不断变化——国防部必须做出改变,以维持和维持其未来的力量。只要我们真正代表了我们的民主,我们就是一支更强大、更有意义的力量。国防部将多样性视为一项战略要务。不同的背景和经历带来了本质上不同的观点和思维方式,这是组织创新的关键。我们通过利用所有成员的多样性并创造一个包容性的环境来获得战略优势,在这个环境中,每个成员都受到重视并被鼓励提供对创新、优化和组织任务成功至关重要的想法。
➔了解我们在特权和压迫体系中的立场,并不学习保护这些系统的习惯和实践,这对我们所有人来说都是终生工作的,毫无例外的是团结和相互关系的真实关系,这是我们不可能避免或超越这些不平衡的工具的,这些态度始终是避免了那些始终建立的,这些习惯是在建立不平等的,即使他们的工作变得无关紧要,却是构成无价值的工具,即有效地构成了一个不可思议的工具,却是有效的,却是有效的,却是有效的,却是有效的,却是有效的,却是有效的,这些习惯是努力的,这些习惯是努力的,这些习惯是构成了一个无效的工具,这些习惯是在努力,而却是有效的。谦卑和问责制➔内部进入沉默,调解,内在的智慧和深厚的喜悦与社会变革的外在工作
本文介绍了一种新颖的“公平性”数据集,以衡量 AI 模型对不同年龄、性别、表观肤色和环境光照条件的稳健性。我们的数据集由 3,011 名受试者组成,包含 45,000 多个视频,平均每人 15 个视频。这些视频是在美国多个州录制的,参与者是不同年龄、性别和表观肤色组的成年人。一个关键特征是每个受试者都同意参与并使用他们的肖像。此外,我们的年龄和性别注释由受试者自己提供。一组训练有素的注释者使用 Fitzpatrick 皮肤类型量表标记受试者的表观肤色 [ 6 ]。此外,还提供了在低环境光下录制的视频的注释。作为衡量跨某些属性的预测稳健性的应用,我们评估了最先进的表观年龄和性别分类方法。我们的实验从公平对待来自不同背景的人的角度对这些模型进行了彻底的分析。
决策算法在社会中的存在感如今正在迅速增加,同时人们也开始担心其透明度以及这些算法可能成为新的歧视来源。事实上,许多相关的自动化系统已被证明会根据敏感信息做出决策或歧视某些社会群体(例如,某些用于人员识别的生物特征识别系统)。为了研究当前基于异构信息源的多模态算法如何受到数据中的敏感元素和内部偏见的影响,我们提出了一个虚构的自动招聘测试平台:FairCVtest。我们使用一组有意识地以性别和种族偏见进行评分的多模态合成档案来训练自动招聘算法。FairCVtest 展示了此类招聘工具背后的人工智能(AI)从非结构化数据中提取敏感信息并以不良(不公平)的方式将其与数据偏见结合起来的能力。最后,我们列出了最近开发能够从深度学习架构的决策过程中删除敏感信息的技术的列表。我们使用其中一种算法(SensitiveNets)来实验歧视感知学习,以消除我们多模态 AI 框架中的敏感信息。我们的方法和结果展示了如何生成更公平的基于 AI 的工具,特别是更公平的自动招聘系统。
机器学习方法在生物识别和个人信息处理(例如法医、电子医疗、招聘和电子学习)领域的重要性日益增加。在这些领域,基于机器学习方法构建的系统的白盒(人类可读)解释可能变得至关重要。归纳逻辑编程 (ILP) 是符号 AI 的一个子领域,旨在自动学习有关数据处理的声明性理论。从解释转换中学习 (LFIT) 是一种 ILP 技术,可以学习与给定黑盒系统等同的命题逻辑理论(在特定条件下)。本研究通过检查 LFIT 在特定 AI 应用场景中的可行性,迈出了将准确的声明性解释纳入经典机器学习的通用方法的第一步:基于使用机器学习方法生成的自动工具进行公平招聘,用于对包含软生物特征信息(性别和种族)的简历进行排名。我们展示了 LFIT 对这个特定问题的表达能力,并提出了一个可应用于其他领域的方案。
在制定这项行动计划时,我们考虑了多种因素。其中最出乎意料的因素之一是 COVID-19 疫情,它在我们的规划过程中爆发了一半。有人问,为什么在全州各个角落成千上万的工人面临如此多的混乱和不确定性的时候,州政府应该把重点放在帮助相对较少的工人和社区上。这个问题最直接的答案是法律要求我们这样做。但更合适的答案是,这两个挑战的性质不同。而且,由于疫情对我们的经济和劳动力的主要影响几乎肯定会在煤炭转型的主要影响发生之前过去,所以我们没有理由不能同时解决这两个问题。人们希望,疫情是一种极其罕见的现象,需要社会各界做出非凡的回应——就像对自然灾害的回应一样。从字面上看,这些事件要求我们所有人放下手头的工作,以应对迫在眉睫且往往是生存的威胁。另一方面,从煤炭到电力的转变是能源经济根本转变的可预见结果。我们可以提前预见到它的到来。对于工人和社区而言,其影响与失去任何大型本地雇主或经济驱动力是一致的。科罗拉多州的历史上,农村地区都发生过这样的转变,部分原因是政府应对不力(或根本不应对),导致繁荣与萧条的循环不断延续,摧毁了家庭和社区。我们认为,政府的基本义务是应对这两种挑战——一种是紧急威胁我们公民健康和安全的挑战,另一种是更可预测地随着时间推移因经济的根本性转变而出现的挑战。除非在最极端的情况下,否则不应将一种挑战排除在另一种挑战之外。
发件人:海军记录更正委员会主席 收件人:海军部长 主题:审查前美国海军成员 XXX-XX- 的海军记录 参考:(a) 10 USC § 1552 附件:(1) DD 表格 149 及附件 1. 根据参考 (a) 的规定,主体,以下称为请愿人,向海军记录更正委员会(委员会)提交了附件 (1),请求更正其退伍证书中的名字。附件 (1) 适用。 2. 委员会由 、 和 组成,于 2023 年 1 月 27 日审查了请愿人的错误和不公正指控,并根据其规定,决定应采取以下指示的纠正措施。委员会审议的文件材料包括申请人的申请书及其提交的所有支持材料、申请人海军记录的相关部分、适用的法规、规章和政策,包括参考资料。3. 委员会审查了与申请人指控的错误和不公正有关的所有记录事实,发现如下:a. 在向委员会提出申请之前,申请人已用尽海军部现行法律和法规规定的所有行政补救措施。尽管申请人的申请没有及时提交,但委员会认为,为了公平起见,应放弃诉讼时效并根据案情进行审议。
