GENDA 是一家快速发展的娱乐业控股公司,经营游乐场和卡拉 OK 包厢。在 CGS,我们认为 GENDA 最大的优势在于其强劲的现金流 (CF) 生成能力,而并购是其主要增长动力。值得注意的是,GENDA 实现了约 25% 的增量投资回报率 - 这是 CGS 评估公司 CF 生成质量的一个关键指标,衡量了运营 CF 增长相对于投资资本增长的回报。即使与采用并购驱动增长战略的全球公司相比,这一表现也非常高,CGS 预计这一水平将长期保持。然而,当我们将 GENDA 与成熟行业中追求整合并购战略的全球公司进行比较时,GENDA 每 1% 预期利润增长的 EV/EBITDA 倍数(截至 2024 年 10 月为 0.3 倍)目前交易价格约为 70-80% 的折扣。从客观角度来看,这表明经济增长被严重低估。
蛋白质发现扩展到基因编辑和治疗应用 加州南旧金山(2020 年 1 月 30 日)Mammoth Biosciences 是世界上第一个基于 CRISPR 的疾病检测平台背后的公司,今天宣布其 B 轮融资获得 4500 万美元超额认购。此次融资由德诚资本领投,Mayfield、NFX、Verily 和 Brook Byers 参投,使公司的融资总额超过 7000 万美元。这笔资金将推动该公司进一步开发 CRISPR 诊断和下一代 CRISPR 产品,同时该公司将其平台扩展到包括基因编辑和下一代治疗方法。Mammoth 还在探索与生物技术和制药公司的深度合作,以利用 Mammoth CRISPR 平台改变医疗保健并造福患者。CRISPR 在治疗疾病方面具有巨大的前景,Cas9 的临床试验已经在进行中——这是将 CRISPR 从实验室带入日常生活的关键一步。但是,尽管这种酶在体外环境中显示出成功的初步迹象,但在体内应用方面仍然存在挑战,限制了 Cas9 在广泛疾病领域的广泛应用。此外,Cas9 不能用于基于 CRISPR 的诊断,这是 Cas 系统的一个新兴和突破性应用。Mammoth 凭借其广泛的新型 Cas 系统组合,在克服这些障碍方面具有独特的优势,这些系统可作为诊断、基因编辑和治疗应用的工具箱。4500 万美元的 B 轮融资将推动 CRISPR 平台的开发,特别关注 Mammoth 发现的 Cas14。Cas14 是一种独特的酶,由于其极小的尺寸、多样化的靶向能力和高保真度,开辟了新的可能性。这些特性将使 Mammoth 能够实现下一代编辑,在体外和体内应用中具有更广泛的靶标范围,并为实现先进的 CRISPR 模式(如靶向基因调控、精确编辑等)奠定基础。最近,包括 Casebia(拜耳与 CRISPR Therapeutics 的合资企业)前联合创始人 Peter Nell 和 Synthego 和 Bio-Rad 前高管 Ted Tisch 在内的业内资深人士分别以首席商务官和首席运营官的身份加入了该公司,以加速公司的发展。Grail 联合创始人、前 Illumina 董事会成员 Jeff Huber 已加入公司董事会担任独立董事,斯坦福大学医学院院长 Lloyd Minor 已加入 Mammoth 顾问委员会。Mammoth Biosciences 首席执行官兼联合创始人 Trevor Martin 解释说:“作为 CRISPR 发现前沿的团队,我们亲眼目睹了对新工具的需求,以实现这项技术所提供的治疗和诊断前景。通过为诊断以外的新产品提供支持,我们正在使
始终引用已发布的版本,因此作者将通过跟踪引用计数的服务获得识别,例如scopus。如果您需要从TSPACE引用作者手稿的页码,因为您无法访问已发布的版本,则使用记录页面上找到的永久性URI(句柄)来引用TSPACE版本。
实习飞行软件、计算机视觉和人工智能瑞士苏黎世公司:Daedalean 是一家总部位于苏黎世的初创公司,由前谷歌和 SpaceX 工程师创立,他们希望在未来十年内彻底改变城市航空旅行。我们结合计算机视觉、深度学习和机器人技术,为飞机开发最高级别的自主性(5 级),特别是您可能在媒体上看到的电动垂直起降飞机。如果您加入我们的实习,您将有机会与经验丰富的工程师一起工作,他们来自 CERN、NVIDIA、伦敦帝国理工学院或……自治系统实验室本身。您将构建塑造我们未来的尖端技术。最重要的是,我们还提供在瑞士阿尔卑斯山试飞期间加入我们飞行员的机会。项目:不同团队提供机会。我们想更多地了解您,以及如何让您的实习成为双方宝贵的经历。告诉我们你一直在做什么,以及你想在我们的团队中从事什么工作。它与深度学习有关吗?状态估计?运动规划?计算机视觉?或者别的什么?向我们展示你的热情所在。如果我们可以在你想从事的领域提供指导和有趣的机会,我们将一起敲定细节。资格: 强大的动手 C++ 证明解决问题的能力 如何申请: 将您的简历/履历发送至 careers@daedalean.ai 。请告诉我们一些关于您自己的信息,为什么您认为自己适合我们以及为什么我们适合您。
协作感知允许在多个代理(例如车辆和基础)之间共享信息,以通过交流和融合来获得对环境的全面看法。当前对多机构协作感知系统的研究通常会构成理想的沟通和感知环境,并忽略了现实世界噪声的效果,例如姿势噪声,运动模糊和感知噪声。为了解决这一差距,在本文中,我们提出了一种新颖的运动感知robus-Busban通信网络(MRCNET),可减轻噪声干扰,并实现准确且强大的协作感知。MRCNET由两个主要组成部分组成:多尺度稳健融合(MRF)通过驱动跨语义的多尺度增强的聚集到不同尺度的融合特征,而运动增强机制(MEM)捕获运动上下文,以补偿动作对物体引起的信息,从而解决了姿势噪声。对流行的协作3D对象检测数据集的实验结果表明,在噪声方案中,MRCNET优于使用较少的带宽感知性能的噪声方案。我们的代码将在https://github.com/indigochildren/collaborative-ception-mrcnet上进行重新释放。
摘要 - 准确的定位在自主机器人系统的有效运行中起着至关重要的作用,尤其是在诸如施工站点之类的染色体环境中。同时使用LIDAR传感器同时定位和映射(SLAM)已成为一种流行的解决方案,因为它在没有外部基础架构的情况下可以进行功能。但是,现有的al-gorithms表现出重大的缺点。尽管当前的方法在长期轨迹上达到了很高的准确性,但它们在复杂的室内环境中的精确性和可靠性而苦苦挣扎。本文介绍了一种新型的基于功能的LiDAR SLAM系统,旨在解决这些局限性并增强短期精度和整体鲁棒性。使用现有数据集和物理机器人平台评估了所提出的系统,以解决当前实现的局限性,并在挑战现实世界中,尤其是在施工环境中展示改进的穿孔。
摘要本文重点介绍了自动驾驶车辆的控制问题之后的路径。旨在增强鲁棒性和衰减现象,基于Lyapunov理论开发了一种超级扭转的滑动模式控制算法(STA),其中通过应用倒退技术来提供控制系统稳定性的证明。此外,进行MATLAB/SIMULINK和CARSIM之间的共模拟以验证控制性能后的路径。在这项研究中,Stanley控制器,常规滑动模式控制(SMC)和模型预测控制(MPC)用作评估提出的STA性能的基准控制器。在模拟中考虑了两种驾驶场景,包括正常驾驶和猛烈驾驶。全面评估控制绩效和控制工作(即转向的大小),新颖地提供了一个集成和加权性能评估指数。仿真结果表明,在正常驾驶情况下,所提出的STA的𝐼𝑊𝑃𝐸𝐼可以减少40.5%,25.8%,10.9%;与斯坦利控制器,常规SMC和MPC相比,在激烈的驾驶情况下,在激烈的驾驶情况下有62.5%,24%,6.8%。结果还表明,所提出的STA在颤动的衰减方面优于常规SMC,从而导致前方向盘角度输入更平滑,并且更平滑。与MPC相比,所提出的STA的优点在于其计算复杂性较低。此外,通过更改车辆质量和轮胎参数来验证控制器的鲁棒性。与基准方法相比,所提出的STA可以将𝐼𝑊𝑃𝐸𝐼的波动减少22.6%,22.3%和5.9%。这些结果表明,对系统扰动的考虑对于超级扭转滑动模式控制器的设计至关重要,这可以改善系统后自动驾驶汽车路径的鲁棒性。
夏尔默斯技术大学的生命科学系,SE412 96哥德堡,瑞典B天津工业生物技术研究所,中国科学学院,蒂安金300308,pr中国C中国生命科学学院,中国科学学院,北欧科学学院,北北方,北方,北部。深圳高级技术研究所,中国科学院,深圳518055,中国Pr中国e工程生物学主要实验室低碳工业研究所,工业生物技术学院,中国科学院,中国科学院DK2200哥本哈根,丹麦G Novo Novo Nordisk生物维护基金会,丹麦技术大学DK2800 Kongens Lyngby,丹麦
1 赞比亚国家公共卫生研究所 通讯作者:Stefanenonde@gmail.com 引用此文章 Chilengi R & Nonde, S. 大声说出来:非洲疫苗叙事必须改变,才能释放非洲大陆的潜力。健康新闻公报。2024;08(3):3-7。