摘要。在过去的几年中,歧视性和生成性的大语言模型(LLM)已成为自然语言处理的主要方法。,尽管取得了重大进步,但在比较跨语性生物医学概念归一化中判别和生成性LLM的性能仍然存在差距。在本文中,我们对几个LLM进行了比较研究,涉及跨语言生物医学概念通过致密检索的具有挑战性的任务。我们利用涵盖10种语言的XL-BEL数据集来评估模型在不进一步适应的情况下在各种语言环境中概括的能力。实验发现表明,E5是一种判别模型,表现出卓越的性能,而生物分类出现为表现最佳的生成LLM。复制实验的代码可在以下网址提供:https://github.com/hrouhizadeh/zsh_cl_bcn。
交叉数据测试对于检查机器学习(ML)模型的性能至关重要。但是,大多数关于转录组和临床数据建模的研究仅进行了数据内测试。还不清楚归一化和非差异表达基因(NDEG)是否可以改善ML的跨数据库建模性能。因此,我们旨在了解归一化,NDEG和数据源是否与ML在跨数据库测试中的性能有关。使用了TCGA和ONCOSG中肺腺癌病例共享的转录组和临床数据。仅使用转录组数据就达到了最佳的跨数据库ML性能,并且在统计学上比使用转录组和临床数据更好。最佳平衡精度(BA),曲线下的面积(AUC)和在TCGA上的ML算法培训中的精度明显高于ONCOSG的测试,而在ONCOSG上进行了测试并在TCGA上进行了测试(所有人的P <0.05)。归一化和NDEG在两个数据集中大大改善了数据集中的ML性能,但在跨数据库测试中却没有。引人注目的是,单独对ONCOSG的转录组数据进行建模优于建模转录组和临床数据,而TCGA中包括临床数据的转录组和临床数据并没有显着影响ML性能,这表明TCGA中转录量数据的临床数据值有限或转录量的倒数影响。在数据内测试中的性能提高更为明显。在比较的六个ML模型中,支持矢量机是在数据集和跨数据库测试中最常见的表现最常见的。因此,我们的数据显示了数据源,归一化和NDEG在建模转录组和临床数据中与数据集和跨数据库ML性能相关。
Duchenne肌肉营养不良(DMD)是一种X连锁疾病,是由DMD基因突变引起的,导致逐渐浪费肌肉和无力。目前无法治愈DMD。BL10-MDX小鼠是临床前DMD研究中最常用的模型,但与DMD患者相比,它表现出温和的疾病表型,从而限制了研究的可转换性。较新的D2-MDX小鼠在很小的时候就具有更严重的表型,并且可以更好地概括人类疾病。将这些小鼠模型与定量RT-PCR,稳定且可靠的参考基因进行比较是必不可少的。We aimed to evaluate the stability and reliability of a panel of nine candidate reference genes ( Actb, Ap3d1, Gapdh, Hmbs, Htatsf1, Pak1ip1, Rpl13a, Sdha and Zfp91 ) in the gastrocnemius, diaphragm and heart of mice from both strains and their corresponding wild types aged 4 to 52 weeks.使用Genorm,最佳门将,三角肌和Normfinder分析数据。我们发现HTATSF1,PAK1IP1和ZFP91是合适的参考基因,用于在营养不良和健康小鼠中基因表达的标准化,无论组织类型或年龄如何。在我们的手中,ACTB,GAPDH和RPL13A不适合作为参考基因,表现出组织,年龄或疾病特定的表达变化。这项研究强调了选择合适的参考基因的重要性,因为它们的稳定性在特定的实验设置之间可能有所不同。
pla窃在计算机科学教育中普遍存在[CJ08; MUR10],主要是由于易于复制数字作业。尽管将其理解为不当行为,但一些学生仍继续进行窃,经常试图通过重命名,重新排序或插入代码来混淆它[kar16; NJK19; sağ+22; sağ+23b; sağ+24b]。在大型强制性课程中,手动检查不切实际[CAM+17],使自动窃检测必不可少[OTT76]。诸如Moss和Jplag之类的软件探测器通常用于解决此问题,假设成功的混淆需要已经教授的技能。然而,窃的发电机,例如mossad [db20],通过在不需要专业知识的情况下自动化混淆来挑战这一假设。Mossad通过插入熵或重新排序语句以逃避检测来打破基于令牌的检测器。
•CHM CDH17是世界上第一个抗CDH17指导的CAR-T细胞疗法•芝加哥大学医学是开发癌症疗法的世界领导者•该临床试验的第1阶段部分旨在招募多达15名患者•现在已经服用了三名患者,现在已经有五个成功的制造业,澳大利亚,澳大利亚,10 febrss chimerics chmiric chmiric chmiric chmiric chmiric chmiric chmiric chmiric chmiric sepapeics opecirics opecriq opecirics opecirics opecirics opecirics opecirics'''''澳大利亚细胞疗法领导者“公司”)很高兴地宣布,芝加哥大学医学(Uchicago Medicine)愿意让患者参加CHM CDH17细胞疗法的1/2阶段Multi-Centre临床试验。第1/2期试验(NCT06055439)是一项两阶段研究,旨在确定建议的2期CDH17剂量,并评估其在晚期大肠癌,胃癌和肠道神经内分泌肿瘤患者中其安全性和客观反应率。CHM CDH17是针对CDH17的第三代新型CAR T细胞疗法,它是最常见的胃肠道肿瘤中与预后不良和转移相关的癌症靶标。Th Uchicago Medicine将由副教授Dan Olson领导,他的研究重点是为包括CAR-T细胞疗法在内的实体瘤开发新的免疫疗法。Uchicago Medicine还是Chimeric科学顾问委员会成员Michael Bishop教授的所在地,他以开创性的干细胞移植并发现突破性的癌症治疗而闻名。“我们正在获得CHM CDH17研究的势头,并很高兴欢迎Uchicago Medicine参加审判,” Chimeric Therapeutics首席执行官Rebecca McQualter博士说。“在CHM CDH17的五次成功制造之后,我们现在已经看到了三名在Sarah Cannon和Upenn网站上服用的患者,并期待尽快宣布进一步的进展。”预计这项研究的第1阶段部分将招募15名患者,并通过特定于2期同伴进行剂量选择和扩张。
原创文章 人工智能增强篮球罚球的运动学分析 BEKIR KARLIK 1、MUSA HAWAMDAH 2 1 埃波卡大学计算机工程系,地拉那,阿尔巴尼亚 2 塞尔丘克大学计算机工程系,科尼亚,土耳其 在线发表:2024 年 12 月 30 日 接受发表:2024 年 12 月 15 日 DOI:10.7752/jpes.2024.12321 摘要:问题陈述和方法:在篮球比赛中,罚球的成功与否取决于球的出手角度、在空中的正确位置以及最佳速度运动特征。本研究利用人工智能(AI)研究了篮球运动员在疲劳前后执行罚球的运动学特征。材料和方法:我们使用了各种监督机器学习算法,包括:k-最近邻 (k-NN)、朴素贝叶斯、支持向量机 (SVM)、人工神经网络 (ANN)、线性判别分析 (LDA) 和决策树。这些算法用于对从球员收集的运动数据得出的特征进行分类,以揭示他们在不同疲劳程度下的投篮机制的模式和变化。当球员在疲劳前后成功和不成功投篮时,在球释放点测量肘部、躯干、膝盖和踝关节角度。有两种方法可用于对这些特征进行分类:第一种方法是直接使用行数据;另一种是使用主成分分析 (PCA) 减少数据。对于这两种方法,数据在应用于分类器之前都在 0-1 之间归一化。结果:我们通过使用朴素贝叶斯分类器对行数据获得了 98.44% 的最佳分类准确率。此外,使用 PCA 对减少数据进行 ANN 的结果显示最佳分类准确率 95.31%。研究结果揭示了疲劳引起的投篮力学的不同模式和变化,并强调了机器学习模型在分析生物力学数据方面的有效性。讨论和结论:这些结果有助于制定训练计划,以提高疲劳状态下的表现和一致性。这项研究强调了人工智能和数据驱动方法在运动生物力学中的潜力,可以为运动员表现和疲劳管理提供有价值的见解。关键词:智能算法、运动生物力学、运动数据、疲劳引起的变化简介在对各种运动进行的研究中已经观察到功能技能和基于技能的运动模式之间的差异。评估功能技能比评估基于技能的运动模式更具挑战性(Goktepe 等人,2009 年;Abdelkerim 等人,2007 年;Chappell 等人,2005 年)。例如,Goktepe 等人(2009 年)利用统计分析来证明踝关节、肩膀和肘部角度对网球发球的影响。Abdelkerim 等人(2007)展示了篮球运动员的计算机化时间运动分析,而 Chappell 等人(2005)则研究了在进行疲劳前和疲劳后练习的三个停跳任务中落地和跳跃动作中改变的运动控制策略。评估基于技能的收缩、适当的肌肉发力时间和关节定位等因素相对容易。值得注意的是,个人之间的动作执行和技能习得存在差异。在篮球罚球中,关节角度是足以将投篮分为不同类别的基本特征(Schmidt 等人,2012;Ge,2024;Zhang & Chen,2024)。疲劳是人类活动的自然结果,会影响运动员在训练和比赛期间的认知和学习能力。虽然大多数研究认为疲劳是影响表现的一个关键因素(Forestier & Nougier,1998;Apriantono 等人,2006),但一些研究表明疲劳对篮球罚球表现没有影响(Uygur 等人,2010;Rusdiana 等人,2019;Li,2021;Bourdas 等人,2024)。例如,Uygur 等人(2010)基于统计运动学分析发现疲劳对罚球没有显著影响。同样,Rusdiana 等人(2019)使用 SPSS 分析了罚球运动学,而 Bourdas 等人(2024)则专注于疲劳对三分跳投的影响。Li 等人(2021)研究了疲劳对女子篮球运动员投篮表现的运动学影响。所有这些研究都采用了统计方法;文献中尚未发现用于分析篮球罚球运动学的人工智能或软计算技术。近几十年来,高效的数据分析显著提高了使用软计算方法的各个领域的生产力。然而,体育科学中的大多数研究都集中在特定的比赛上,以探索不同数据源或机器学习技术在结构分析和语义提取中的作用。这项研究是首次将机器学习方法应用于运动学分析一些研究表明疲劳对篮球罚球表现没有影响(Uygur 等人,2010 年;Rusdiana 等人,2019 年;Li,2021 年;Bourdas 等人,2024 年)。例如,Uygur 等人(2010 年)根据统计运动学分析发现疲劳对罚球没有显著影响。同样,Rusdiana 等人(2019 年)使用 SPSS 分析了罚球运动学,而 Bourdas 等人(2024 年)则专注于疲劳对三分跳投的影响。Li 等人(2021 年)研究了疲劳对女子篮球运动员投篮表现的运动学影响。所有这些研究都采用了统计方法;文献中没有发现用于分析篮球罚球运动学的人工智能或软计算技术。近几十年来,高效的数据分析已显著提高了使用软计算方法的各个领域的生产力。然而,体育科学中的大多数研究都集中在特定的比赛上,以探索不同的数据源或机器学习技术在结构分析和语义提取中的作用。本研究首次将机器学习方法应用于运动学分析一些研究表明疲劳对篮球罚球表现没有影响(Uygur 等人,2010 年;Rusdiana 等人,2019 年;Li,2021 年;Bourdas 等人,2024 年)。例如,Uygur 等人(2010 年)根据统计运动学分析发现疲劳对罚球没有显著影响。同样,Rusdiana 等人(2019 年)使用 SPSS 分析了罚球运动学,而 Bourdas 等人(2024 年)则专注于疲劳对三分跳投的影响。Li 等人(2021 年)研究了疲劳对女子篮球运动员投篮表现的运动学影响。所有这些研究都采用了统计方法;文献中没有发现用于分析篮球罚球运动学的人工智能或软计算技术。近几十年来,高效的数据分析已显著提高了使用软计算方法的各个领域的生产力。然而,体育科学中的大多数研究都集中在特定的比赛上,以探索不同的数据源或机器学习技术在结构分析和语义提取中的作用。本研究首次将机器学习方法应用于运动学分析
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版本的版权持有人于2025年1月1日发布。 https://doi.org/10.1101/2024.12.30.630839 doi:Biorxiv Preprint
胆汁盐水解酶(BSH)是一种细菌酶(EC 3.5.1.24),它启动了胆汁酸(BAS)的至关重要的解偶(BAS),这是它们通过肠道微生物转化为二级BAS的过程。最近的进步已经深入研究了BAS,将它们视为能够调节宿主中脂质和糖代谢的内分泌分子。在这篇综述中,我们阐明了这项丰富的研究如何扩大我们对BSH以外的BAS和肠道微生物群之间复杂机制的理解,这是益生菌乳酸杆菌的降胆固醇症的影响。我们强调了各种乳酸杆菌的扩展范围,并且在体外和体内都具有证实的胆固醇活性,与BSH活性相关。此外,还提供了研究肠道菌群和乳杆菌中BSH基因的基因组和元基因组研究的摘要,可作为选择潜在的乳酸菌益生菌的附加工具。