摘要 铂被广泛用作混合硫 (HyS) 循环中氢气生产的首选催化剂。在此循环中,水 (H 2 O) 和二氧化硫 (SO 2 ) 反应生成硫酸和氢气。然而,铂对 H 2 O 和 SO 2 的表面反应性尚未完全了解,尤其是考虑到表面上可能发生的竞争吸附。在本研究中,我们进行了密度泛函理论计算和长程色散校正 [DFT-D3-(BJ)],以研究 H 2 O 和 SO 2 对 Pt (001)、(011) 和 (111) 表面的竞争效应。比较单个H 2 O分子在不同Pt表面的吸附情况,发现H 2 O在(001)表面的解离吸附能最低(E ads = –1.758 eV),其次是(011)表面(E ads = –0.699 eV)和(111)表面(E ads = –0.464 eV)。对于SO 2 分子的吸附,趋势类似,在(001)表面的吸附能最低(E ads = –2.471 eV),其次是(011)表面(E ads = –2.390 eV)和(111)表面(E ads = –1.852 eV)。因此,在H 2 O和SO 2 竞争吸附时,SO 2 分子会优先吸附到Pt表面。如果SO 2 浓度增加,两个相邻的SO 2 分子之间可能会发生自反应,导致表面形成一氧化硫(SO)和三氧化硫(SO 3 ),这可能导致Pt催化表面硫中毒。
1 冷泉港实验室,美国纽约州冷泉港;2 威尔康奈尔医学科学研究生院计算生物学和医学三机构博士项目,美国纽约州纽约;3 加文-魏茨曼细胞基因组学中心,加文医学研究所,新南威尔士州达令赫斯特;4 新南威尔士大学医学科学学院,新南威尔士州悉尼
摘要:泛基因组旨在代表一个物种或一组物种中存在的完整基因组多样性,捕捉个体之间的基因组结构差异。这种基因组信息与表型数据相结合,可用于识别与非生物胁迫耐受性、抗病性和其他理想性状有关的基因和等位基因。泛基因组中新结构变体的表征可以支持基因组编辑方法,例如成簇的规律间隔短回文重复序列和 CRISPR 相关蛋白 Cas (CRISPR-Cas),以更高的效率提供有关基因序列和变体特异性基因中新靶位的功能信息。本综述讨论了泛基因组在基因组编辑和作物改良中的应用,重点介绍了泛基因组准确识别植物基因组 CRISPR-Cas 编辑靶基因的潜力,同时避免了不利的脱靶效应。我们考虑了使用泛基因组参考资料应用 CRISPR-Cas 编辑的局限性以及克服这些局限性的潜在解决方案。
成纤维细胞生长因子受体 ( FGFR ) 是四个同源、高度保守的跨膜酪氨酸激酶受体 ( FGFR 1-4) 家族 (1)。虽然 FGFR 广泛分布于全身,但它们在非恶性细胞中不具有组成活性。FGFR 与成纤维细胞生长因子 (FGF) 配体结合,导致 FGFR 二聚化,随后酪氨酸残基发生磷酸化,从而引发一系列细胞内事件,激活主要信号转导通路,包括 RAS/MAPK、PI3K/AKT 和 JAK/STAT 通路 (2,3)。FGFR 信号转导在各种生物过程中发挥作用,包括细胞增殖、迁移、抗凋亡、血管生成、伤口愈合和组织再生 (4,5)。 FGFR 信号的组成性激活会导致增殖和血管生成失调、产生耐药性和免疫逃避 (5-8)。据报道,FGFR 异常(包括基因扩增、染色体易位和/或突变)见于多种癌症,包括乳腺癌 (9)、尿路上皮癌 (10)、胃癌 (11)、肺癌 (8) 和前列腺癌以及多发性骨髓瘤 (12)。
细胞多样化是在Ontog-Eny期间获得的系统发育中增加多细胞生物复杂性的基础。然而,所有细胞也有共同的功能,例如细胞分裂,细胞迁移,翻译,内吞,胞吐作用等。在这里,我们重新审视了这种常见功能所涉及的细胞器,回顾了这些细胞器中蛋白质意外差异的最新证据。例如,中心体或线粒体在不同的,有时是密切相关的细胞类型中的蛋白质组成上有显着差异。这与发育和疾病有关。特别引人注目的是这些和其他细胞器中RNA结合蛋白的大量和多样性,这使我们能够回顾不同细胞器和亚尺寸层中RNA的证据。我们包括有关转化涉及的(子)细胞器(例如核仁和核糖体)的讨论,还报道了意外的细胞类型特异性多样性。我们在这里提出,这些细胞器和隔室的异质性代表了调节细胞多样性的新机制。一个原因是,蛋白质功能可以乘以它们在不同的或范围内的不同贡献,也可以用具有月光功能的蛋白质来体现。专门的细胞器仍执行泛素函数,但在细胞类型特异性模式下,此处讨论了中心体,线粒体,小囊泡和其他或其他或其他或其他或其他或其他效果。这些可以用作用于存储和运输特定且功能上重要的调节器的调节中心。通过这种方式,它们可以控制细胞分化,质量和生存。我们进一步包括强调疾病相关性的例子,并提议在许多细胞类型中检查细胞器中的细胞器,以使其具有功能相关性的可能区别。
CisSig 评分 IC50(连续)简单线性回归全部相关系数 0.51 CisSig 评分 IC50(连续)简单线性回归五分位数相关系数 0.74 所有基因表达 IC50(连续)弹性网线性回归全部相关系数 0.63 所有基因表达 IC50(连续)弹性网线性回归五分位数相关系数 0.79 所有基因表达 IC50(连续)L1 线性回归全部相关系数 0.63 所有基因表达 IC50(连续)L1 线性回归五分位数相关系数 0.79 所有基因表达 IC50(连续)L2 线性回归全部相关系数 0.63 所有基因表达 IC50(连续)L2 线性回归五分位数相关系数0.81 所有基因表达 IC50(二元)简单逻辑回归所有 AUC 0.79 所有基因表达 IC50(二元)简单逻辑回归五分位数 AUC 0.90 所有基因表达 IC50(二元)弹性网络逻辑回归所有 AUC 0.82 所有基因表达 IC50(二元)弹性网络逻辑回归五分位数 AUC 0.94 所有基因表达 IC50(二元)L1 逻辑回归所有 AUC 0.82 所有基因表达 IC50(二元)L1 逻辑回归五分位数 AUC 0.94 所有基因表达 IC50(二元)L2 逻辑回归所有 AUC 0.81 所有基因表达 IC50(二元)L2 逻辑回归五分位数 AUC 0.95 所有基因表达 IC50(二元)SVM(线性核)所有 AUC 0.82 所有基因表达 IC50(二元) SVM(线性核)五分位数 AUC 0.93 所有基因表达 IC50(二元)SVM(多项式核)所有 AUC 0.78 所有基因表达 IC50(二元)SVM(多项式核)五分位数 AUC 0.94 所有基因表达 IC50(二元)随机森林所有 AUC 0.81 所有基因表达 IC50(二元)随机森林五分位数 AUC 0.91
EPH 受体 (EPHs) 是酪氨酸激酶的最大家族,在与 Ephrin 细胞表面相关配体结合后磷酸化下游底物。在来自子宫内膜异位症患者的大量子宫内膜异位病变中,我们发现子宫内膜异位病变中的 EPHA2 和 EPHA4 表达相对于正常的正常子宫内膜有所增加。由于通过 EPHs 的信号传导与细胞迁移和侵袭增加有关,我们假设化学抑制 EPHA2/4 可能具有治疗价值。我们筛选了 DNA 编码化学库 (DECL) 以快速识别 EPHA2/4 激酶抑制剂。命中化合物 CDD - 2693 对 EPHA2 (K i : 4.0 nM) 和 EPHA4 (K i : 0.81 nM) 表现出皮摩尔/纳摩尔激酶活性。激酶组分析显示,CDD-2693 与大多数 EPH 家族和 SRC 家族激酶结合。使用 NanoBRET 靶标参与分析,CDD-2693 对 EPHA2 (IC 50 : 461 nM) 和 EPHA4 (IC 50 : 40 nM) 具有纳摩尔活性,但对 SRC、YES 和 FGR 具有微摩尔抑制剂活性。化学优化产生了 CDD-3167,对 EPHA2 (K i : 0.13 nM) 和 EPHA4 (K i : 0.38 nM) 具有皮摩尔生化活性,对 EPHA2 (IC 50 : 8.0 nM) 和 EPHA4 (IC 50 : 2.3 nM) 具有出色的细胞效力。此外,CDD-3167 保持了卓越的脱靶细胞选择性。在 12Z 子宫内膜异位上皮细胞中,CDD - 2693 和 CDD - 3167 显著降低了 EFNA5(配体)诱导的 EPHA2/4 磷酸化,降低了 12Z 细胞活力,并降低了 IL - 1 β 介导的前列腺素合酶 2 ( PTGS2 ) 表达。CDD - 2693 和 CDD - 3167 降低了子宫内膜异位症患者原发性子宫内膜上皮类器官的扩增,并降低了尤文氏肉瘤的活力。因此,使用 DECL,我们确定了有效的泛 EPH 抑制剂,这些抑制剂在子宫内膜异位症和癌症的细胞模型中表现出特异性和活性。
最近发现的反复突变的表观遗传调节基因 (ERG) 支持它们在肿瘤发生中的关键作用。我们对 33 种癌症类型的 426 个 ERG 进行了一项泛癌症分析,包括 10,845 个肿瘤和 730 个正常组织。我们发现,除了突变之外,ERG 中的拷贝数变异比之前预期的更频繁,并且与表达异常紧密相关。新的生物信息学方法整合了各种驱动预测和多组学算法的优势,以及针对所有 ERG 的正交体外筛选 (CRISPR-Cas9),揭示了在恶性肿瘤内和跨恶性肿瘤具有驱动作用的基因以及在多种癌症类型和特征中起作用的共享驱动机制。这是迄今为止最大、最全面的分析;这也是首次专门识别 ERG 驱动因素 (epidrivers) 并描述其在致癌过程中的失调和功能影响的实验。
他们的研究揭示了理解旁系同源基因演变的重要性(通过基因复制而产生的)在预测基因组编辑结果中的重要性。CSHL教授和HHMI研究员Zachary Lippman领导了这项研究。“那里有很多很棒的食物作物,”他说。“与'主要的'农作物相比,他们中有多少人没有受益?”
表 1.1 – 工作文件清单 8 表 2.1 – 已审查的先前调查清单 9 表 3.1 – 选定位置的峰值设计洪水水位 (m AHD) 15 表 4.1 – 当前洪水预警和响应的组织职责 22 表 4.2 – 格拉夫顿 2001 年 3 月洪水的洪水预警系统评估 23 表 4.3 – 需要审查的洪水计划 26 表 4.4 – 房屋加高的优点和缺点 35 表 4.5 – 克拉伦斯河下游的房屋加高选项 38 表 4.6 – 克拉伦斯河下游的房屋加高建议 39 表 4.7 – 受洪水影响的住宅的初步估计 41 表 4.8 – 第 149 节注释的建议措辞50 表 5.1 – 格拉夫顿堤坝漫溢顺序(百年一遇洪水) 56 表 5.2 – 格拉夫顿洪峰水位(m AHD) 57 表 5.3 – 格拉夫顿堤坝抬高导致的洪水水位上升 61 表 5.4 – 格拉夫顿记录的积水水位 63 表 5.5 – 南格拉夫顿堤坝漫溢顺序(百年一遇洪水) 66 表 5.6 – 南格拉夫顿洪峰水位(m AHD) 67 表 5.7 – 南格拉夫顿和格拉夫顿堤坝抬高导致的洪水水位上升 70 表 5.8 – 根据漫溢研究得出的麦克莱恩设计洪水水位 73 表 5.9 – 布拉什格罗夫洪泛区管理方案 79表 5.10 – 修订后的堤坝方案经济评估 81 表 6.1 – 建议的洪泛区风险管理计划 96