抽象的抽水储存厂(PSP)被认为是具有低CO 2足迹的批量存储能源最成熟和最可靠的技术。随着可变可再生能源和电源设备的大规模整合,传输系统操作员(TSO)需要更大的灵活性,以确保电能的安全供应。从一家发电公司的角度来看,这代表了收入来源的多元化,因为作为快速频率服务倾向于出现的新市场。,尽管他们可以通过消耗或提供能源来平衡网格功率,但PSP的主要缺点是他们的低时间响应,使他们无法获得这些新的报酬机制。使用电池或超级电容器等技术的技术,使用诸如独立的储能系统(ESS)杂交水力发电厂,以提高PSP的灵活性并解锁提供动态辅助服务的一种考虑的解决方案之一。但是,水电站和环境限制中可用的少量空间可能会使这种解决方案难以访问。传统上,可逆PSP与固定速度机一起使用。静态频率转换器(SFC)通常用于在泵模式下启动组。从这个角度来看,拟议的论文提出了增强静态转换器(E-SFC)的创新概念。它是将ESS直接集成到工厂的SFC中,以使用电源转换器的使用使用。纸张的组织如下。在第3节中,暴露了协同控制方法操作混合动力厂的需求。与与工厂中型电压网格耦合的传统EST相比,它还提供了减少总体资本支出的机会。第1节提出了水力发电厂的灵活性,以适应不断增长的需求和全球新兴的辅助服务。在第2节中,SuperGrid Institute杂交PSP的创新解决方案,并在未来的电力市场中保持了现有的水力发电机队的关键作用。第4节描述了PSP在LOOP(PHIL)测试钻机中实时功率硬件杂交的实验结果。最后,第5节结束并突出了所提出的解决方案的优势。
癌症免疫疗法的成功取决于诱导靶向MHC-I分子呈现肿瘤抗原(TA)的免疫保护反应。我们证明了剪接抑制剂Isoginkgetin及其在先锋翻译产品(PTPS)生产阶段的水溶性和无毒衍生物IP2 ACT。我们表明,IP2在体外增加了PTP衍生的抗原表现,并损害体内肿瘤的生长。IP2作用是持久的,并且取决于针对TA的CD8 + T细胞响应。我们观察到,在用IP2处理后,对MCA205纤维肉瘤表面的MHC-I分子显示的抗原库进行了修饰。特别是,IP2增强了肿瘤抑制剂nisadary的外显子衍生表位的表现。IP2的组合具有靶向Nischarin衍生的表位的肽疫苗在体内表现出协同的抗肿瘤作用。这些发现将剪接体确定为开发基于表位的免疫疗法的可药物目标。
功能性神经成像提供了独特的机会,可以根据大脑区域对任务或正在进行的活动的反应来描述大脑区域。因此,它具有捕捉大脑空间组织的前提。然而,描述这种组织的概念框架仍然难以捉摸:一方面,分区隐含地建立在分段常数组织上,即由清晰边界分隔的平坦区域;另一方面,最近流行的功能梯度概念暗示了一种平滑的结构。注意到这两种观点都趋向于将功能特征的局部变化拼凑在一起的拓扑方案,我们对基于局部梯度的模型进行了定量评估。使用功能性磁共振成像 (fMRI) 数据的预测作为驱动案例——具体来说,从受试者的静止 fMRI 图中预测任务 fMRI——我们基于参考拓扑词典开发了一个逐块线性回归模型。我们的方法使用多个随机分区——而不是单个固定分区——并汇总这些分区的估计值以预测遗漏受试者的功能特征。我们的实验证明了分割的最佳基数的存在,以捕捉功能图的局部梯度。
研究文章 | 系统/电路 人类颈部硬膜外脊髓电图地形图显示不同的意志运动 https://doi.org/10.1523/JNEUROSCI.2258-23.2024 收稿日期:2023 年 11 月 27 日 修订日期:2024 年 4 月 22 日 接受日期:2024 年 6 月 6 日 版权所有 © 2024 作者
摘要 - 图卷积网络(GCN)最近进行了研究,以利用人体的图形拓扑用于基于骨架的动作识别。然而,不幸的是,大多数这些方法是通过动摇的各种动作样本的易加色模式汇总信息,缺乏对级别内部品种的认识和对骨架序列的适当性,这些骨骼序列通常包含冗余甚至有害连接。在本文中,我们提出了一个新型的可变形图卷积网络(DEGCN),以适应性地捕获最有用的关节。拟议的DEGC在空间图和时间图上学习了可变形的采样位置,从而使模型能够感知歧视性接受领域。值得注意的是,考虑到人类的作用本质上是连续的,相应的时间特征是在连续的潜在空间中定义的。此外,我们设计了创新的多分支框架,该框架不仅在准确性和模型大小之间进行了更好的权衡,而且还可以显着提高集合的效果。广泛的实验表明,我们提出的方法在三个广泛使用的数据集上实现了最新的性能,即NTU RGB+D,NTU RGB+D 120和NW-UCLA。
我们提出了一种差异量子本素(VQE)算法,用于在循环树二元性中有效地引导多链feynman图的因果表示,或等效地,在有线图中选择了acyclic配置。基于描述多核拓扑的邻接矩阵的循环hamiltonian,其不同的能级对应于循环的数量,而VQE则将其最小化以识别因果或无环构型。该算法已改编成选择多个退化的最小值,从而达到更高的检测率。详细讨论了与基于Grover的算法的性能比较。,VQE方法通常需要更少的量子和较短的电路来实施,尽管成功率较小。
每周 COVID-19 疫苗接种的条形图 NHSN 中可以为医护人员和长期护理 (LTC) 居民生成汇总数据。条形图是一种图形化的数据表示,其中条形的长度或高度表示符合条件的记录数。此资源旨在提供分步说明,说明如何使用“条形图”报告查看部分和完全接种 COVID-19 疫苗的居民百分比。请注意,虽然此示例包含有关居民百分比的信息,但相同的过程可以应用于运行 LTC 或医护人员安全 HPS 组件中的医护人员报告。
Ò Ò Ò Ò Ò Ò 𝐓𝐡𝐞𝐫 𝐓𝐡𝐞𝐫 Ò 𝐓𝐡𝐞𝐫 𝐓𝐡𝐞𝐫 𝐓𝐡𝐞𝐫 𝐓𝐡𝐞𝐫 𝐓𝐡𝐞𝐫 Ò ÒÒ Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò ÒÒ Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò ÒÒ Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò ÒÒ Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò ÒÒ Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò ÒÒ Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò ÒÒ Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò ÒÒ Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò ÒÒ Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò ÒÒ Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò ÒÒ Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò ÒÒ Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò ÒÒ Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò ÒÒ Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò ÒÒ Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò ÒÒ Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò ÒÒ Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò ÒÒ Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò ÒÒ Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò ÒÒ Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò ÒÒ Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò ÒÒ Ò Ò𝐓𝐡𝐞𝐫 𝐓𝐡𝐞𝐫 Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò ÒÒ Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò ÒÒ Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò ÒÒ Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò ÒÒ Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò ÒÒ Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò ÒÒ Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò ÒÒ Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò ÒÒ Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò ÒÒ Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò ÒÒ Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò ÒÒ Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò ÒÒ Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò ÒÒ Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò ÒÒ Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò ÒÒ Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò ÒÒ Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò ÒÒ Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò ÒÒ Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò ÒÒ Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò Ò ÒÒ Ò Ò Ò Ò Ò Ò Ò面向对象ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ面向对象面向对象
第1部分:图的基本要素是什么?完成图表时,您正在创建数据的可视化表示形式,以便更容易理解。需要包含在图中的某些元素由首字母缩写“ T.A.I.L.S.”表示。 t:标题 - 每个图都需要与观众传达图形整体所代表的内容。a:轴 - x轴和y轴在图上表示什么?I:间隔 - 每个轴必须具有均匀间隔的间隔。l:标签 - 每个轴都需要出现标签,如果包含多条线,则为每行。s:比例 - 通过在每个轴上使用适当的比例,应在图像上均匀间隔数据。在大多数情况下,请记住,X轴将代表自变量,Y轴将代表因变量。为什么这样做很重要?
参数化的复杂性。已知许多广泛关注的计算问题通常是NP -HARD。然而,通常可以使用隐式的许多现实实例来有效地找到确切的解决方案。在特定类别的各种实例上,对各种问题进行了长期的系统研究,并且朝这个方向进行研究构成了计算机科学的基本领域之一。但是,在许多现实情况下,不可能定义我们希望解决的明确类别的实例;实例不像是黑白(是否属于特定类别),而是具有各种灰色阴影(具有一定程度的内部结构)。相对年轻的参数化复杂性范式[6,4,8,16]提供了处理这种情况的理想工具。在参数化设置中,我们将每个实例与数值参数相关联,该参数捕获了该实例的“结构化”。这样就可以开发其性能的算法强烈取决于参数 - 而不是经典设置,在这种情况下,我们经常将拖延性与多项式运行时间相关联,而棘手的性能与超多种元素相关联,参数化算法自然而然地“缩放”与实例中包含的结构量相关联。参数化设置中的易处理性的中心概念是固定参数的拖延(简而言之),这意味着可以通过f(k)·n o(k)·n o(1)的运行时解决给定的问题(f是任意可计算的功能,k是k的值,k是k的值,k是参数的值,n是输入大小)。除了固定参数障碍性外,参数化的复杂性景观还包括各种伴侣概念,例如XP索取性,内核化和W- hardness。