参数化的复杂性。已知许多广泛关注的计算问题通常是NP -HARD。然而,通常可以使用隐式的许多现实实例来有效地找到确切的解决方案。在特定类别的各种实例上,对各种问题进行了长期的系统研究,并且朝这个方向进行研究构成了计算机科学的基本领域之一。但是,在许多现实情况下,不可能定义我们希望解决的明确类别的实例;实例不像是黑白(是否属于特定类别),而是具有各种灰色阴影(具有一定程度的内部结构)。相对年轻的参数化复杂性范式[6,4,8,16]提供了处理这种情况的理想工具。在参数化设置中,我们将每个实例与数值参数相关联,该参数捕获了该实例的“结构化”。这样就可以开发其性能的算法强烈取决于参数 - 而不是经典设置,在这种情况下,我们经常将拖延性与多项式运行时间相关联,而棘手的性能与超多种元素相关联,参数化算法自然而然地“缩放”与实例中包含的结构量相关联。参数化设置中的易处理性的中心概念是固定参数的拖延(简而言之),这意味着可以通过f(k)·n o(k)·n o(1)的运行时解决给定的问题(f是任意可计算的功能,k是k的值,k是k的值,k是参数的值,n是输入大小)。除了固定参数障碍性外,参数化的复杂性景观还包括各种伴侣概念,例如XP索取性,内核化和W- hardness。
主要关键词