摘要。本文旨在分析旅游业,它是世界经济中规模最大、增长最快的行业之一,其对环境状况的影响具有重大而多方面的社会文化和经济后果。方法论基于科学和特殊的研究方法。使用分析、综合、系统化、分类、概括经济和方法来源的方法。研究表明,旅游业可以成为一种强大的经济工具,但如果规划不当,它可能会对生物多样性和原始环境产生毁灭性的影响,导致滥用水、森林和海洋生物等自然资源。在许多世界旅游发展中心,今天已经感受到缺水现象,这对当地社区的生活、工业的运作、森林的破坏和珊瑚礁的破坏产生了负面影响。本文解决了与旅游业对生态环境状况的多种影响有关的重要问题。旅游业对环境的不利影响同时破坏了沿海地区的主要旅游资源,并严重影响了其他非旅游经济活动。分析认为,当游客的使用水平超出了环境在可接受的变化范围内应对这种使用的能力时,就会产生旅游业的负面后果。事实证明,为了避免这些后果,必须以环境可持续、社会有益和经济可行的方式规划、管理和实施旅游业。
我们研究高度激发量子态的相对熵。首先,我们从 Wishart 集合中抽取状态,并开发出一种大 N 图解技术来计算相对熵。该解决方案以基本函数的形式精确表示。我们将分析结果与小 N 数值进行比较,发现它们完全一致。此外,随机矩阵理论结果与混沌多体本征态的行为精确匹配,这是本征态热化的表现。我们将这种形式应用于 AdS = CFT 对应,其中相对熵测量不同黑洞微态之间的可区分性。我们发现,即使观察者对量子态的访问量任意小,黑洞微态也是可区分的,尽管这种可区分性在牛顿常数中非微扰地小。最后,我们在子系统本征态热化假设 (SETH) 的背景下解释这些结果,得出结论,全息系统服从 SETH,直到子系统达到整个系统的一半大小。
随着通信技术的升级和量子计算的飞速发展,经典的数字签名方案面临着前所未有的挑战,对量子数字签名的研究势在必行。本文提出一种基于五量子比特纠缠态受控量子隐形传态的多代理签名方案。该方案采用量子傅里叶变换作为加密方法对消息进行加密,与量子一次一密相比提高了量子效率。采用满足量子比特阈值量子纠错要求的五量子比特最大纠缠态作为量子通道,保证了方案的稳定性。安全性分析表明,该方案具有不可伪造、不可否认的特点,能够抵抗截获重发攻击。
量子纠缠作为一种重要资源是量子力学最显著的特征之一,在量子信息论、量子隐形传态[1]、通信和量子计算[2,3]中都发挥着核心作用。由于其基础性作用,在分离子系统之间产生纠缠态是一个重要课题。近年来,已提出了多种产生纠缠态的方法,其中之一就是 Jaynes-Cummings 模型 (JCM)。JCM 解释了量化电磁场和原子之间的相互作用 [4]。JCM 是一个简单但适用的工具。在过去的二十年里,人们致力于将 JCM 应用到量子信息[5-7]和量子隐形传态[8]中。由 JCM 诱导的纠缠态已被用作量子通道 [9]。 Zang 等人 [10] 利用两能级原子与大失谐单模腔场相互作用,将二分非最大纠缠态转变为 W 态。原子与单模电磁腔场相互作用的纠缠动力学已被研究 [11]。由于 JCM 在量子光学中的重要性,它已被扩展
预期使用Gen III Microplate™测试面板使用94种生化测试提供了标准化的微方法,以剖面并识别革兰氏阴性和革兰氏阴性细菌的广泛范围。生物学的微生物识别系统软件(例如Omnilog®数据收集)用于从Gen III微板岩中的表型模式中鉴定细菌。描述生物Gen III微镀酸盐分析了94个表型测试中的微生物:71个碳源利用分析(图1,列1-9)和23种化学敏感性测定(图1,列,10-12列)。测试面板提供了微生物的“表型指纹”,可用于在物种水平上识别它。所有必要的营养物质和生化物都被预填充并干燥成96孔的微板井。四唑氧化还原染料用于比色表示碳源的利用或对抑制性化学物质的抗性。进行测试非常简单,如图2所示。要鉴定的分离物在琼脂培养基上生长,然后在推荐的细胞密度下悬浮在特殊的“胶凝”接种液3(IF)中。然后将细胞悬浮液接种到Gen III微板酸盐中,每孔100 µL,然后将微孔板孵育以使表型指纹形成。接种时,所有井都无色。在孵育过程中,在细胞可以利用碳源和/或生长的井中呼吸增加。增加的呼吸导致四唑氧化还原染料的减少,形成紫色。图1。负井仍然无色,负面对照井(A-1)也没有碳源。也有一个阳性对照井(A-10)用作10-12列中化学敏感性测定的参考。孵化后,将紫色井的表型指纹与生物学广泛的物种文库进行了比较。如果发现匹配,则将进行分离物的物种水平识别。在微板元素III微板TM
目标 提供有关 MEMS 技术和制造的基本知识。 课程目标 本课程应使学生能够: 1. 了解微制造的演变。 2. 学习各种制造技术。 3. 了解微传感器和微执行器。 4. 学习各种微执行器的设计。 第一单元简介(9 小时) 基本定义 – 微制造的演变 – 微系统和微电子学,缩放定律:静电力、电磁力、结构刚度、流体力学和传热的缩放。 第二单元微传感器(9 小时) 简介 – 微传感器:生物医学传感器和生物传感器 – 化学传感器 – 光学传感器 – 压力传感器 – 热传感器、声波传感器。 第三单元微执行器(9 小时) 微驱动:使用热力、压电晶体、静电力进行驱动。基于 SMA 的微执行器,微执行器:微夹钳、微电机、微阀门、微泵、微加速度计 - 微流体。第四单元 MEMS 制造技术(9 小时)MEMS 材料:硅、硅化合物、压电晶体、聚合物微系统制造工艺:光刻、离子注入、扩散、氧化、CVD、溅射、蚀刻技术。第五单元微加工(9 小时)微加工:体微加工、表面微加工、LIGA 工艺。封装:微系统封装、基本封装技术、封装材料选择。
肠道菌群越来越被认为是肠粘膜中血管发育和内皮细胞功能的致动变量,但也影响远程器官的微脉管系统。在小肠中,用肠道菌群定殖以及随后的先天免疫途径的激活促进了复杂的毛细血管网络和乳乳的发展,从而影响了肠道的完整性 - 血管屏障的完整性以及营养摄取。由于肝脏通过门户循环产生大部分的血液供应,因此肝微循环稳步遇到微生物元素衍生的模式和主动信号代谢物,这些代谢产物会诱导肝弦正弦内皮的组织变化,从而影响正弦的免疫分化并影响代谢过程。,此外,微生物群衍生的信号可能会影响远处器官系统(例如大脑和眼睛微血管)的脉管系统。近年来,这个肠道居民的微生物生态系统被揭示出有助于几种血管疾病表型的发展。