基于 Al/AlO x /Al 约瑟夫森结的超导量子比特是通用量子计算机物理实现最有希望的候选者之一。由于可扩展性和与最先进的纳米电子工艺的兼容性,人们可以在单个硅芯片上制造数百个量子比特。然而,由非晶电介质中的双层系统(包括隧道势垒 AlO x )引起的这些系统中的退相干是主要问题之一。我们报告了一种约瑟夫森结热退火工艺开发,用于结晶非晶势垒氧化物(AlO x )。获得了热退火参数对室温电阻的依赖关系。所开发的方法不仅可以将约瑟夫森结电阻提高 175%,还可以将其降低 60%,R n 的精度为 10%。最后,提出了关于隧道势垒结构修改的理论假设。建议的热退火方法可用于为广泛使用的固定频率 transmon 量子比特形成稳定且可重复的隧道屏障和可扩展的频率调整。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是制作
摘要:缺陷和微观结构对TI-6AL-4V焊缝的机械性能的影响;等离子体电弧焊接;电子梁焊接;在目前的工作中研究了激光束焊接。评估了微硬度的不同焊接类型的机械性能;产量强度;最终的拉伸强度;延性以及在室温和升高温度下(200℃和250℃)的疲劳。的晶体学对不同焊接类型的微观结构进行表征,并进行了分裂研究以将缺陷对疲劳性能的影响联系起来。电子和激光束焊接比钨惰性气体焊接和等离子体弧焊接产生的微结构,更高的拉伸延展性和更好的疲劳性能。大毛孔和靠近标本表面的孔最不利于疲劳寿命。
磁共振成像 (MRI) 已成为脑部活体检查的主要成像技术。除了解剖和功能 MRI 之外,扩散 MRI (dMRI) 还广泛用于临床和研究,以评估组织结构和纤维方向,尤其是在神经系统中。虽然扩散张量成像是评估方向测量的最广泛方法,但也提出了其他更复杂的模型。然而,dMRI 的验证是一项具有挑战性的工作,需要专门的测试样本。本文显示,双光子聚合 (2PP) 3D 打印允许制造此类测试对象,也称为幻影。在升级 2PP 制造工艺后,可以创建具有高空间分辨率和足够尺寸的 3D 结构,以便在人体 7T MRI 扫描仪中成像。这些幻影可靠地模拟了人类白质,从而能够系统地验证和确认 dMRI 数据及其分析。 3D 打印结构包含多达 51,000 个微通道,可模拟较大轴突的扩散行为,每个微通道的横截面积为 12 × 12 μ m 2,平行和交叉排列。获取的 dMRI 数据显示并验证了这些新型脑模型的实用性。
白质微结构可塑性与阅读障碍教育干预相关 2 Steven L. Meisler 1,2* (smeisler@g.harvard.edu, ORCID: 0000-0002-8888-1572) 3 John DE Gabrieli 1,2,3 (gabrieli@mit.edu, ORCID: 0000-0003-1158-5692) 4 Joanna A. Christodoulou 2,3,4 (jchristodoulou@mghihp.edu, ORCID: 0000-0001-8167-8021) 5 6 1:哈佛医学院言语和听力生物科学与技术项目,260 Longwood Avenue,波士顿,MA 02115,美国; 8 2: 麻省理工学院脑与认知科学系,43 Vassar Street,剑桥,MA 02139,美国;10 3: 麦戈文脑研究所,43 Vassar Street,剑桥,MA 02139,美国;11 4: 麻省总医院健康职业研究所通信科学与障碍系,12 36 First Ave,查尔斯顿,MA 02129,美国13 14 *: 通讯作者 (smeisler@g.harvard.edu)15
路易斯安那州立大学先进微结构与器件中心 (CAMD) 为研究人员提供了美国东南部唯一的同步加速器光源。作为美国七家此类设施之一,超过 80 名研究人员(包括路易斯安那州立大学的教职员工和学生、工业用户、当地初创公司和国家研究实验室的成员)使用 CAMD。它也是吸引主要中心级资助进入大学以及招募顶级教师的重要资源。
我们展示了量子退火方法在确定形状记忆合金和其他材料中的平衡微结构方面的用途和优势,这些材料具有相干晶粒与其不同马氏体变体和相之间的长程弹性相互作用。在对一般方法进行一维说明之后,该方法需要以伊辛汉密尔顿量的形式来表示系统的能量,我们使用晶粒之间的远距离相关弹性相互作用来预测不同转变特征应变的变体选择。将计算结果和性能与经典算法进行比较,表明新方法可以显著加快模拟速度。除了使用简单的长方体元素进行离散化之外,还可以直接表示任意微结构,从而允许快速模拟目前多达数千个晶粒。
本文通过引入Hetarch(用于设计异质量子系统的工具箱)来实现异质FTQC设计的挑战,并使用它来探索异性设计方案。使用分层方法,我们可以将量子算法分解为较小的操作(类似于经典应用程序内核),从而大大简化了设计空间和所得的权衡。专门针对超导系统,我们设计了由多种超导设备组成的优化异质硬件,将物理约束抽象成设计规则,使设备能够将设备组装到针对特定操作的标准单元中。最后,我们提供了一个异质的设计空间探索框架,该框架将模拟负担减少了10个或更多倍,并使我们能够将最佳的设计点提高。我们使用这些技术来设计用于纠缠蒸馏,误差校正和代码传送的超导量子模块,将错误率降低2。6×,10。7×和3。0×与均质系统相比。
运行标题:塞内克斯抑制CDK8/19鲁棒性强制执行病毒潜伏期,这是HIV-1治疗关键词的“阻止和锁定”策略:CDK7; CDK8; CDK9; CDK19; YKL-5-124; LDC000067;塞内克斯蛋白A; HIV-1;潜伏期;转录; tfiih;介体激酶; p-tefb;块和锁 *通信:I。Sadowski,Dept.生物化学和分子生物学,UBC,2350 Health Sciences Mall,Vancouver,B.C.,V6T 1Z3,加拿大;电子邮件:ijs.ubc@gmail.com;电话:(604)822-4524;传真:(604)822-5227。