在研究应用程序方面,3D打印为实现具有高结构控制的材料提供了许多有趣的途径。此外,对微型制造的需求不断增加,并且希望在(子)微米尺度上构造材料的愿望驱动了微型和纳米印刷技术的发展。在其中,两光子聚合(2pp)3D打印是一种直接激光写作(DLW)技术,可在100 nm范围内提供精美的空间分辨率。[7]然而,这种微型的作用是以减少可打印材料的选择为代价,通常是少数有机墨水和photosistists。[8-11]尽管取得了巨大进展,但仍有重大挑战。在特定的情况下,在单个微观印刷过程中,多种和不同材料(例如有机和无机材料)的整合和精确地点目前难以捉摸;一些示例包括通过沉积和/或电镀过程在光震抗菌中的纳米颗粒分散。[8,12,13]但是,这些方法不能对不同材料的定位进行微米空间控制,而这些材料的定位只有有限的可能选择范围。尽管如此,无机和有机,硬和软组件,动态和静态材料的组合将使许多新的研究方向(例如,将其用于超材料)。相反,具有预先微观结构控制的复杂2D和3D材料是粒子合成和组装领域的大量努力的核心。[14]此外,例如,对于微型机器人来说,设备的微型化可能要求印刷结构的不同部分执行不同的功能,例如驱动,传感或结合,因为它在较大的尺度上可以使用,或者可以简单地将多个功能组合在单个设备中。胶体合成路线提供了大量不同材料的颗粒,具有精致的形状和功能。然而,由于需要以非常微妙和精确的方式控制相互作用的必要性,因此它们在大规模结构中提出了问题,并且仅在少数情况下才能实现成功。[15,16]此外,
锌离子电池(ZIBs)因其成本低、安全性高、资源丰富等特点而受到广泛关注。然而,到目前为止,寻找具有高工作电位、优异电化学活性和良好结构稳定性的正极材料仍然存在挑战。为了应对这些挑战,人们广泛研究了微结构工程来调节正极材料的物理性质,从而提高了ZIBs的电化学性能。本文主要集中于各种ZIB正极材料的微结构工程的最新研究成果,包括成分和晶体结构选择、晶体缺陷工程、层间工程和形貌设计。进一步讨论了ZIB正极性能对水性电解质的依赖性。最后,提出了ZIB正极材料微结构工程的未来前景和挑战。旨在深入了解微结构工程对Zn 2 +的影响
PA-12 粉末原料中存在的低分子量化合物的高分辨率质谱 (ESI-MS) 分析 PA-12 粉末原料中存在的 CHCl 3 可溶性低分子量物质的 ESI-MS 质谱如图 S2 所示。该质谱是在正离子模式下通过直接注入稀释的 CHCl 3 溶液获得的。文献中之前已详细描述了使用液相质谱法鉴定从聚酰胺材料中迁移出的十二内酰胺单体、二聚体和三聚体物质的方法。1 Irganox 1098 是长链脂肪族聚酰胺材料中常用的抗氧化剂。2
摘要 出生时的大脑皮层结构编码了区域差异化的树突分枝和突触形成。它是 2 岁儿童行为出现的基础。0-2 岁时的大脑变化在整个生命周期中最为活跃。通过出生时的大脑微结构有效预测未来行为将揭示正常发育中行为出现的结构基础,并确定用于早期发现和针对性干预非典型发育的生物标志物。在这里,我们旨在评估通过扩散 MRI 量化的新生儿全脑皮层微结构以预测未来行为。我们发现,使用支持向量回归,新生儿皮层微结构可以稳健地预测 2 岁时评估的个体认知和语言功能。值得注意的是,对预测模型贡献很大的皮层区域表现出对认知和语言的独特功能选择性。这些发现强调了出生时的区域皮层微结构是预测未来神经发育结果和识别个体脑部疾病风险的潜在敏感生物标志物。
1 英国布里斯托大学 HH Wills 物理实验室器件热成像与可靠性中心 (CDTR),Tyndall Avenue,布里斯托 BS8 1TL,英国。2 中国科学院半导体研究所超晶格与微结构国家重点实验室,北京 100083,中国。3 中国科学技术大学纳米科学与技术研究所,合肥 230026,中国。4 上海高压科学与技术先进研究中心,上海 201203,中国。5 哈尔滨工业大学理学院,深圳 518055,中国。 6 北京工业大学光电子技术教育部重点实验室,北京 100124,中国 7 大阪市立大学电子信息系统系,大阪住吉杉本 3-3-138,日本 558-8585 8 大阪都立大学工程研究生院,大阪住吉杉本 3-3-138,日本 558-8585
摘要 本研究采用射频磁控溅射技术在SiO2/Si基底上沉积铝(Al)薄膜,以分析射频溅射功率对微结构表面形貌的影响。采用不同的溅射射频功率(100–400 W)来沉积Al薄膜。利用X射线衍射图(XRD)、扫描电子显微镜(SEM)、原子力显微镜(AFM)和傅里叶变换红外(FTIR)光谱研究了沉积Al薄膜的特性。X射线衍射(XRD)结果表明,低溅射功率下沉积的薄膜具有非晶性质。随着溅射功率的增加,可以观察到结晶。AFM分析结果表明,300 W的射频功率是生长最光滑Al薄膜的最佳溅射功率。FTIR结果表明,不同的射频功率影响沉积薄膜的化学结构。 SEM结果表明,随着溅射功率的增加,基体表面形成了孤立的纹理。总之,射频功率对沉积薄膜的性质,特别是结晶和形状有显著的影响。
摘要:重要的是研究形成的hastelloy-X合金的激光粉末床融合(LPBF)的微观结构和质地演变,以通过调节Hastelloy-X形成过程参数的调节来建立过程,微结构和性能之间的紧密关系。在本文中,hastelloy-X合金的成分是用不同的激光能密度(也称为体积能密度VED)形成的。研究了Hastelloy-X的致密机理,并分析了缺陷的原因,例如毛孔和裂缝。使用电子反向散射技术研究了不同能量密度对晶粒尺寸,质地和方向的影响。结果表明,随着能量密度的增加,平均晶粒尺寸,原发性树突臂间距和低角度晶界的数量增加。同时,VED可以增强质地。随着能量密度的增加,质地强度会增加。在96 J·mm -3的VED处获得了最佳的机械性能。
对于微尺度 4D 光响应致动器,光在两个方面至关重要。首先,底层的增材制造技术依赖于由光吸收触发的光聚合过程。其次,光的吸收可作为驱动刺激。这两种吸收可能会发生冲突。虽然微结构需要在驱动波长下具有强吸收,但这种吸收不应干扰制造过程的吸收。本文提出了一种简单的策略来克服这些限制,并允许制造可以在不同波长的光下驱动的多光响应 3D 微结构。选择双光子 3D 激光打印作为制造技术,液晶 (LC) 弹性体作为功能材料。第一步,使用对齐的 LC 墨水配方制造 3D 微结构。然后,通过交换过程将多达五种不同的染料成功地并入 LC 微结构中,这些染料的吸收范围覆盖整个可见光区 (400-700 nm),从而可以通过使用合适的波长进行照射来实现可编程驱动。此外,通过结合表现出正交吸收的染料,可以展示波长选择性驱动。
摘要 几十年来,多个科学领域一直在讨论腹侧和背侧视觉流之间的相互作用程度。最近,由于自动化和可重复方法的进步,研究直接连接与背侧和腹侧流相关的皮质区域的几种白质束已成为可能。这组束(此处称为后垂直通路 (PVP))的发育轨迹尚未描述。我们提出了一种输入驱动的白质发育模型,并通过关注 PVP 的发育为该模型提供证据。我们使用可重复的云计算方法和成人和儿童(5-8 岁)的扩散成像来比较 PVP 的发育与腹侧和背侧通路内的束的发育。PVP 微结构比背侧流微结构更像成人,但比腹侧流微结构更不像成人。此外,PVP 微结构与腹侧流的微结构比背侧流的微结构更相似,并且可以通过儿童在感知任务中的表现来预测。总体而言,结果表明 PVP 在背侧视觉流的发展中发挥了潜在作用,这可能与其在学习过程中促进腹侧流和背侧流之间相互作用的能力有关。我们的结果与提出的模型一致,表明主要白质通路的微结构发展至少在一定程度上与视觉系统内感觉信息的传播有关。
摘要 几十年来,多个科学领域一直在讨论腹侧和背侧视觉流之间的相互作用程度。最近,由于自动化和可重复方法的进步,研究与背侧和腹侧流相关的皮质区域直接连接的几种白质束已成为可能。这组束(此处称为后垂直通路 (PVP))的发育轨迹尚未描述。我们提出了一种输入驱动的白质发育模型,并通过关注 PVP 的发育为该模型提供证据。我们使用可重复的云计算方法和成人和儿童(5-8 岁)的扩散成像来比较 PVP 的发育与腹侧和背侧通路内的束的发育。PVP 微结构比背侧流微结构更像成人,但比腹侧流微结构更不像成人。此外,PVP 微结构与腹侧流的微结构比背侧流的微结构更相似,并且可以通过儿童在感知任务中的表现来预测。总体而言,结果表明 PVP 在背侧视觉流的发展中发挥了潜在作用,这可能与其在学习过程中促进腹侧流和背侧流之间相互作用的能力有关。我们的结果与提出的模型一致,表明主要白质通路的微结构发展至少在一定程度上与视觉系统内感觉信息的传播有关。
