。cc-by 4.0国际许可(未经Peer Review尚未获得认证)是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。它是制作
道德声明:根据国家癌症研究所机构审查委员会批准,根据第99-31 C-0099的方案对三名患者进行了研究。父母32患者签署了协议知情同意书和摄影同意书。33签名表格已在NIH上存档。可以根据要求提供34个带有标识符的编辑副本。35
微粗糙度和低表面能防冰表面因具有超疏水和低冰亲和力而受到研究人员的极大兴趣。然而,通过模板法快速制备未开发微结构的超疏水表面 (SHS) 一直是进一步应用的瓶颈。在这项工作中,将负载石墨烯 (GP) 作为磁性纳米粒子的四氧化三铁 (Fe 3 O 4 ) 引入聚丙烯 (PP) 基质中,作为超疏水防冰/除冰表面的热载体。通过微注射成型和磁引力相结合的方法制备微结构 PP/GP/Fe 3 O 4 表面。使用多物理场耦合模型对具有磁引力的定向粒子迁移进行分析。磁引力使微柱的高度从~85 μ m 增大到~150 μ m,使表面保持较高水接触角(~153 ◦)和稳定的空气腹板,以便液滴以 1 ms-1 的初速度重复撞击。对于发育成熟的微柱,可以通过延长光路来更有效地吸收光以进行多次反射。与纯 PP 表面相比,在强度为 1 kW m-2 的一次太阳辐照下,复合材料表面的光热性能表明,温度在 67 秒内从环境温度升高到 94 ◦ C,而冰粘附强度在同期从~30 降低到~9 kPa。磁性粒子的光热功效可延长 SHS 结冰时间。由于 SHS 对室外注塑件具有出色的被动防冰和主动除冰性能,预计其将有望在制造中实际应用。
频率选择表面 (FSS) 由周期性排列的一维或二维金属结构组成,由于其频率谐振特性而备受关注。FSS 可以根据其尺寸、形状、厚度和其他参数在特定频率范围内选择性地反射 (带阻) 或透射 (带通) 入射电磁波,这是 FSS 的识别特征。[1] 金属和介电材料结构被广泛用于设计太赫兹 FSS 或滤波器,因为它们具有高机械强度,有助于产生功能化设计。金属 FSS 可以通过反射或吸收电磁干扰来屏蔽,但是,制造所需结构的成本很高,并且正在被碳基材料取代,以获得高频电磁特性,具有合适的成本、重量轻、无腐蚀等特点。[2] 通常,碳基材料以 sp、sp 2 和 sp 3 键合,形成相互连接的碳-碳键的长链,从而产生不同的物理和电性能。 [3] 因此,这类材料可归类为半金属或非电介质材料(如石墨烯、石墨、碳纳米管、碳纳米纤维)[4,5],因此通过在磁场和电场中应用飞秒激光脉冲产生 THz 脉冲,其纳米复合材料可表现出 THz 光跃迁、光电特性和介电特性。[6–11] 由于存在非局域 π 键电子,这些碳基材料表现出优异的 EMI 屏蔽性能。自由移动的电子与电磁波相互作用,导致反射,在共振频率下具有最大回波损耗值。[12] 过多的电磁能量会损坏周围的电路并引起不必要的噪声脉冲。Liang 等人。报道了竹状短碳纤维@Fe3O4@酚醛树脂和蜂窝状短碳纤维@Fe3O4@FeO复合材料作为高性能电磁波吸收材料,在4-18 GHz范围内成功实现了反射损耗-10 dB。[13]然而,在文献中对碳基材料在THz范围内的表征仍然没有很好的解释,关于碳基材料FSS特性的报道很少。最近,一种利用3D打印制造的碳基FSS吸收器
在研究应用程序方面,3D打印为实现具有高结构控制的材料提供了许多有趣的途径。此外,对微型制造的需求不断增加,并且希望在(子)微米尺度上构造材料的愿望驱动了微型和纳米印刷技术的发展。在其中,两光子聚合(2pp)3D打印是一种直接激光写作(DLW)技术,可在100 nm范围内提供精美的空间分辨率。[7]然而,这种微型的作用是以减少可打印材料的选择为代价,通常是少数有机墨水和photosistists。[8-11]尽管取得了巨大进展,但仍有重大挑战。在特定的情况下,在单个微观印刷过程中,多种和不同材料(例如有机和无机材料)的整合和精确地点目前难以捉摸;一些示例包括通过沉积和/或电镀过程在光震抗菌中的纳米颗粒分散。[8,12,13]但是,这些方法不能对不同材料的定位进行微米空间控制,而这些材料的定位只有有限的可能选择范围。尽管如此,无机和有机,硬和软组件,动态和静态材料的组合将使许多新的研究方向(例如,将其用于超材料)。相反,具有预先微观结构控制的复杂2D和3D材料是粒子合成和组装领域的大量努力的核心。[14]此外,例如,对于微型机器人来说,设备的微型化可能要求印刷结构的不同部分执行不同的功能,例如驱动,传感或结合,因为它在较大的尺度上可以使用,或者可以简单地将多个功能组合在单个设备中。胶体合成路线提供了大量不同材料的颗粒,具有精致的形状和功能。然而,由于需要以非常微妙和精确的方式控制相互作用的必要性,因此它们在大规模结构中提出了问题,并且仅在少数情况下才能实现成功。[15,16]此外,
1 英国布里斯托大学 HH Wills 物理实验室器件热成像与可靠性中心 (CDTR),Tyndall Avenue,布里斯托 BS8 1TL,英国。2 中国科学院半导体研究所超晶格与微结构国家重点实验室,北京 100083,中国。3 中国科学技术大学纳米科学与技术研究所,合肥 230026,中国。4 上海高压科学与技术先进研究中心,上海 201203,中国。5 哈尔滨工业大学理学院,深圳 518055,中国。 6 北京工业大学光电子技术教育部重点实验室,北京 100124,中国 7 大阪市立大学电子信息系统系,大阪住吉杉本 3-3-138,日本 558-8585 8 大阪都立大学工程研究生院,大阪住吉杉本 3-3-138,日本 558-8585
伤口护理研究旨在加速组织再生,同时尽量减少疤痕形成。由于愈合过程的脆弱性,任何阻碍伤口愈合的因素都会增加伤口变成慢性伤口或更糟的不愈合伤口的可能性。[1] 致病菌在伤口定植并形成生物膜(见 S1 部分,支持信息)是一种常见的并发症,会减缓伤口愈合并引发慢性炎症。在生物膜中,细菌可以对环境逆境产生抵抗力 [2],因此在面对常用药物治疗时具有弹性。有必要开发替代解决方案,特别是对于世界上缺乏及时进行即时治疗所需基础设施的地区,例如经济困难地区或武装冲突地区。 [3,4] 例如,2017 年,全球 3,890 万至 6,290 万例败血症相关死亡病例中,1,010 万至 1,200 万例(占全球死亡人数的 19.7%)中有 85% 发生在中低收入国家。 [5] 如果能获得更有效的伤口护理,这些死亡病例和许多非致命性截肢病例中的许多病例本可以得到预防。即使在医疗基础设施丰富的地区,抗生素耐药性感染仍然构成重大威胁。美国疾病控制中心报告称,每年有超过 280 万例抗生素耐药性感染导致 3.5 万多人死亡。 [6] 欧盟委员会估计,抗生素耐药性每年导致欧盟 2.5 万人死亡,全球 70 万人死亡,并预测到 2050 年抗生素耐药性传染病造成的死亡人数将超过癌症。[7] 除了眼前的医疗保健挑战外,这些感染还带来严重的经济影响,美国和欧盟每年的医疗保健费用和生产力损失分别高达 315 亿美元 [8] 和 15 亿欧元 [7]。目前有各种有效的局部伤口愈合解决方案,[9,10] 但相比之下,深部伤口的替代方案却很少。局部伤口愈合历史悠久:缝合伤口可以追溯到新石器时代,[11] 可吸收的动物结扎线在早期就被引入
1个微生物活动单元,微生物学部,土壤,水与环境研究所,农业研究中心,吉萨12619,埃及2埃及2,塔布克大学塔布克大学科学系生物化学系,沙特阿拉伯71421; yalenazi@ut.edu.sa 3医学实验室技术系,应用医学科学学院,泰巴大学,麦地那42353,沙特阿拉伯; akhateb@taibahu.edu.sa 4种子病理学研究部,植物病理研究所,农业研究中心,吉萨12619,埃及5埃及5个中央实验室,生物技术中心实验室,植物病理研究所,农业研究中心,埃及吉萨12619,埃及; mira_ppri@yahoo.com 6 Mansoura University,Mansoura 35516的植物学系,埃及; d_darwish@mans.edu.eg *通信:zeiadmoussa@gmail.com(Z.M.); nohamohamadt@gmail.com(N.M.E.); wesameldin.saber@arc.sci.eg(W.I.A.S.)
通信[4] 环境监测[5] 以及可穿戴和神经形态计算[6]。这也将对物联网 (IoT) 产生影响,在物联网中,智能对象通过无线连接与环境和人体进行交互。[7] 由柔性材料制成的高性能电子设备可以在高速通信、高效图像传感等方面增加新的功能。[4c,8] 例如,如果单个光电探测器 (PD) 设备可以在宽光谱下以低功耗和低延迟工作,则可以显著提高无线通信的传输速率、传输容量和效率。此外,单个 PD 可以满足对宽光谱开关 [9] 或存储器存储 [10] 的需求。然而,到目前为止的研究主要集中于在特定波长(即紫外线 [1b,10,11] 可见光 [12] 或近红外 [13] 光谱)下高性能柔性 PD 的开发和特性描述。近来,很少有人尝试开发超快和可共形宽带光电探测器件。[8b,14] 其中,基于二维材料和钙钛矿的异质结构已显示出扩展光电探测器件工作波长的潜力。[14] 这是由于它们具有直接带隙和大吸收系数。[15] 具体而言,由于钙钛矿可溶液加工且制造成本低廉,因此在光电应用方面引起了更多关注。然而,由于迁移率低(≈1-10 cm 2 Vs)[16] 和稳定性差,[17] 光电探测器件的性能指标(例如响应度 [ R ] 和特定探测率 [D*])一般。环境条件下稳定性差的原因是水和氧分子的吸附,这大大加速了钙钛矿感光层的降解。 [15a] 人们正在努力通过不同的封装方式来提高钙钛矿基器件的稳定性,但低固有迁移率仍将是一个挑战。因此,人们仍在努力开发下一代具有宽光谱灵敏度和稳健制造路线的柔性高性能 PD。在上述背景下,砷化镓 (GaAs) 等无机化合物半导体的纳米结构和薄膜已显示出巨大的光电潜力