摘要 对采用激光粉末定向能量沉积 (LP-DED) 制备的 316L 不锈钢 (SS) 在经过应力消除 (SR)、固溶退火 (SA) 和热等静压 (HIP) 等各种热处理 (HT) 步骤后的微观结构和拉伸性能进行了表征。使用光学和扫描电子显微镜 (SEM) 分析了 HT 之前和之后的微观结构。进行了准静态单轴拉伸和硬度测试以测量机械性能。拉伸结果表明,与其他 HT 条件(即 SR、SA、HIP、SR+SA 和 SR+HIP)相比,非热处理 (NHT) 条件具有更高的强度但更低的延展性。通过采用两步 HT 条件(即 SR+SA 和 SR+HIP),与单个单步 HT 条件(即 SA 或 HIP)相比,拉伸性能没有显著变化。研究结果表明,除非需要进行 HIP 来最大限度地减少体积缺陷含量,否则 LP-DED 316L SS 不需要进行两步 HT。
我们采用完全自洽的横向分辨 Hartree-Fock 近似,以数值方式处理近宏观样本尺寸的量子霍尔区域中较高朗道能级的电子配置。在低无序性下,我们发现空间分辨的条纹和气泡状电荷密度调制,并展示了它们如何根据填充因子出现。这些边界区域的微观细节决定了将电荷密度调制对齐为条纹或气泡的几何边界条件。使用非平衡网络模型模拟传输,在接近半填充的条纹区域中,注入电流的方向具有明显的各向异性。我们获得的条纹周期为 2.9 个回旋半径。我们的结果提供了对其在强磁场中后果的直观理解,并表明在长度尺度上研究时,整数量子霍尔区域中的许多粒子物理学占主导地位。
摘要 微生物组科学的一个关键挑战是规模不匹配问题,当对微生物群落进行采样、研究和平均的规模与这些群落中单个微生物相互之间以及与环境相互作用的规模不同时,就会出现这一问题。对一茶匙土壤、一勺粪便或一片植物叶片表面的微生物群落进行分析代表着多个数量级的规模不匹配,这可能会限制我们解释或预测此类样本中物种相互作用和群落组装的能力。在本篇观点中,我们探讨了历史上和现在被划分为微观经济学和宏观经济学的经济学家如何处理规模不匹配问题,以及如何从(微观)经济学家那里获取线索可以使微生物组学领域受益。
可以将微观结肠炎的发生率与几个欧洲国家的IBD(溃疡性结肠炎和克罗恩病)的发生率进行比较。丹麦病理学登记册在2001年至2016年之间对丹麦的患者进行了全国范围的研究。在1980年至2013年期间,克罗恩病的发病率从5.2升至每10万居民,而溃疡性结肠炎的发生率从10.7升至18.6(Lophaven等人(Lophaven等)2017)。相比之下,丹麦的显着性结肠炎的总体发病率从2001年的每100,000人的2.3例增加到2016年的每10万人的24.3例。2011年,观察到的微型结肠炎的最高发生率为每100,000人32.3人(Weimers等人。2020)。
大脑需要在神经元和大规模大脑区域之间进行有效的信息传递。大脑连接遵循可预测的组织原则。在细胞层面,较大的超颗粒锥体神经元具有更大、更多分支的树突树、更多突触,并执行更复杂的计算;在宏观尺度上,区域到区域的连接显示出多样化的架构,高度连接的枢纽区域促进了复杂的信息整合和计算。在这里,我们探讨了这样一种假设,即大规模区域到区域连接的分支结构遵循与神经元尺度类似的组织原则。我们检查了五个人类捐赠者大脑(1 名男性,4 名女性)的 10 个皮质区域的超颗粒锥体神经元(300 1)基底树突树的微尺度连接。树突复杂性被量化为分支点数、树长、树突棘数、树突棘密度和整体分支复杂性。高分辨率弥散加权 MRI 用于构建皮质皮层布线的白质树。使用与树突树相同的方法来检查所得白质树的复杂性,结果表明,异模关联区域具有比主要区域更大、更复杂的白质树(p,0.0001),并且宏观尺度复杂性与微观尺度测量并行,包括输入数量(r=0.677,p=0.032)、分支点(r=0.797,p=0.006)、树长度(r=0.664,p=0.036)和分支复杂性(r=0.724,p=0.018)。我们的研究结果支持整合理论,即大脑连接遵循神经元和宏观尺度上的类似连接原则,并为研究大脑条件下多组织层面的连接变化提供了一个框架。
高度顽固的塑料材料的生产增加及其在生态系统中的积累产生了调查新的可持续策略以减少这种污染的需求。根据最近的工作,使用微生物联盟可能有助于改善塑料生物降解性能。这项工作涉及使用从人为受污染的微观重点中的顺序和诱导的富集技术来选择和表征塑料降解的微生物联盟。缩影由土壤样品组成,其中埋葬了LLDPE(线性低密度聚乙烯)。联盟。富集培养物在每月转移到新培养基中孵育105天。监测总细菌和真菌的丰度和多样性。像LLDPE一样,木质素是一种非常复杂的聚合物,因此其生物降解与某些顽固塑料的聚合物紧密相关。出于这个原因,还进行了不同富集的木氨基氨氨利释放微生物的计数。另外,联盟成员被分离,分子鉴定并酶表征。结果表明,在诱导选择过程结束时,每个培养物转移的微生物多样性丧失。该联盟的一些成员显示出与顽固塑料聚合物降解有关的广泛酶促活性,铜绿假单胞菌REBP5或假单胞菌AlloputiDA afloputida rebp7菌株脱颖而出。与在薄膜形式的LLDPE培养物中选择的联盟相比,从粉末形式的LLDPE培养物中选择的财团更有效,从而导致微塑性重量在2.5%至5.5%之间。被确定为Castellaniella denitrificans Rebf6和Debaryomyces Hansenii Relf8的菌株也被认为是该联盟的相关成员,尽管它们显示出更离散的酶促曲线。其他财团成员可以在伴随LLDPE聚合物的添加剂降解中进行合作,从而促进了塑料结构的其他真正降级器的随后访问。尽管初步,但在这项工作中选择的微生物联盟有助于当前对自然环境中积累的人为起源的顽固塑料降解的知识。
摘要 - 非乳腺癌皮肤癌(NMSC)是起源于皮肤顶层的最普遍的癌症形式之一,其中Basalcellcarcinoma(BCC)和Squamouscellcarcinoma(SCC)是其主要类别。尽管两种类型都可以进行高度治疗,但治疗的成功取决于早期诊断。早期NMSC检测可以通过临床检查来实现,通常涉及视觉检查。一种替代方法,尽管是侵入性的方法是一种皮肤活检。微波成像已获得非侵入性早期检测到各种癌症的突出性,利用健康和恶性组织的不同介电特性来区分肿瘤并将其归类为良性或恶性。最近的研究表明,通过在低THz范围(0.1至10 THz)中对齐电磁波频率与生物分子的谐振频率(例如蛋白质)在低THz范围(0.1至10 THz)中对齐生物标志物的潜力来检测生物标志物。本研究提出了一种创新的微观生物传感器,旨在
微观结构分析是实验土力学的重要组成部分,每项实验室土力学研究都应通过一种微观结构分析来完成。土力学中的微观结构分析包括扫描电子显微镜 (SEM) 分析和 X 射线粉末衍射分析 (XRD) 两个主要元素。在 SEM 分析中,通过视觉呈现土壤和/或药剂颗粒之间发生的相互作用,并突出显示形态变化。在 XRD 分析中,将研究土壤和/或药剂的组成元素。事实上,在 SEM 分析中研究的是微粒的物理特性,而在 XRD 分析中研究的是它们的化学特性。本研究回顾了在岩土工程领域进行的一系列研究,特别是在地基改良领域,微观结构分析在这些领域非常有效,取得了可靠的结果。
