Error 500 (Server Error)!!1500.That’s an error.There was an error. Please try again later.That’s all we know.
根据收集的证据,可可和牲畜系统的生产者都认为与气候相关的不确定性增加,这显着影响其生产系统。在解决和/或减轻气候变化引起的问题的策略方面,生产商确定了各种行动,包括灌溉系统,地块的恢复或康复,覆盖的花园和温室,农作物多样化,种子储备,森林保护,有机作物,太阳能作物,太阳能面板,遗传改善,遗传旋转和livestation and Livestack and Livestock and Livestocks。此外,生产商不仅可以减轻气候变化,而且还可以改善动物福利(例如,提供阴影和增强的营养),强调了Silvopastoral Systems的关键作用。这些行动可能会导致气候变化缓解和适应。
通过观察、问卷调查和其他技术,心理学家已经能够引出个体操作员(通常是飞行员)的心理模型。然而,将设计与特定个体的心理模型进行比较只能提供非常具体的信息;我们感兴趣的是设计是否容易产生模式混淆,为此,将设计与通用心理模型进行比较比将设计与个体心理模型进行比较更有用。这种通用模型可以从培训材料中提取(培训手册的目的之一,通常是隐含的,就是诱导足够的心理模型),也可以指定为明确的要求(例如,“这个按钮应该像一个切换按钮一样运行”)。认知研究对这些模型的性质提供了两个重要见解:首先,它们可以用称为“状态机”的数学结构紧凑地表示;第二,它们往往相当简单(这可以通过应用两个规范的简化来解释[3])。
摘要:了解高级驾驶员辅助系统(ADA)和自动驾驶汽车(AV)技术的复杂性对于道路安全至关重要,尤其是关于驾驶员采用的问题。有效的培训是确保这些技术的安全和合格运行的关键因素。这项研究强调了训练方法在塑造驱动因素的心理模型中的关键作用,该方法定义为个人的认知框架,以理解和与ADAS和AV系统进行互动。他们的心理模型极大地影响了他们与这些技术的互动。已经对基于文本和基于视频的培训方法进行了比较分析,以评估他们对参与者的表现的影响以及其ADA和ADA和航空功能的心理模型的发展。性能是根据参与者在驱动模拟中与ADA和AV函数相互作用的准确性和反应时间的评估。调查结果表明,基于视频的培训产生了更好的表现成果,更准确的心理模型以及对参与者中ADAS功能的更深入的了解。这些发现对于政策制定者,汽车制造商和参与驾驶员培训的教育机构至关重要。他们强调了制定量身定制的培训计划的必要性,以促进日益复杂的汽车技术的熟练和安全运行。
人机协作的真正潜力在于利用人类和人工智能的互补能力,实现优于单个人工智能或人类的联合绩效,即实现互补团队绩效 (CTP)。为了实现这种互补潜力,人类需要谨慎地遵循人工智能的建议,即适当地依赖人工智能的建议。虽然之前的研究主要集中在建立人工智能的心理模型来评估人工智能的建议,但最近的研究表明,仅靠心理模型无法解释适当的依赖。我们假设,除了心理模型之外,人类学习是适当依赖的关键介质,因此也是 CTP 的关键介质。在本研究中,我们在一项有 100 名参与者的实验中展示了学习与适当依赖之间的关系。这项工作为分析依赖提供了基本概念,并为人机决策的有效设计提供了启示。
图 2. 点击主界面上的观看视频按钮时,如图 1 所示,参与者将看到一个模式,允许他们观看视频。 (A) 显示所选查询以及视频中是否找到该查询 (B)。如果他们在解释存在的情况下,他们会看到进度条 (C) 下用于得出答案(找到/未找到)的所有视频片段。他们可以点击每个可用的片段来查看基于在片段中发现的相关活动的模型论证 (D),以及系统在所选片段中检测到的所有组件的置信度得分 (E)。
3 约克大学心理学系 赫斯灵顿 约克 YO10 5DD 英国 g.baxter@psych.york.ac.uk 摘要。本文重点介绍了一种影响心理模型准确性的心理现象。当两个连续事件按照操作员的预期发生时,就会发生这种情况。通常,这种情况会增强人们对心理模型的信心。然而,连续事件可能会随机同时发生,其原因实际上与操作员所认为的原因不同。尽管如此,由于环境数据与操作员的期望一致,一个事件可以被视为另一个事件的原因。当这种错误信念发生时,心理模型就会被错误地认为是有效的。我们以真实的商业空难为例,讨论了这种现象及其潜在的灾难性后果。最后,我们讨论了对系统设计和支持工具的一些影响。关键词。心理模型;人为错误;认知心理学;关键系统。
摘要:了解高级驾驶员辅助系统(ADA)和自动驾驶汽车(AV)技术的复杂性对于道路安全至关重要,尤其是关于驾驶员采用的问题。有效的培训是确保这些技术的安全和合格运行的关键因素。这项研究强调了训练方法在塑造驱动因素的心理模型中的关键作用,该方法定义为个人的认知框架,以理解和与ADAS和AV系统进行互动。他们的心理模型极大地影响了他们与这些技术的互动。已经对基于文本和基于视频的培训方法进行了比较分析,以评估他们对参与者的表现的影响以及其ADA和ADA和航空功能的心理模型的发展。性能是根据参与者在驱动模拟中与ADA和AV函数相互作用的准确性和反应时间的评估。调查结果表明,基于视频的培训产生了更好的表现成果,更准确的心理模型以及对参与者中ADAS功能的更深入的了解。这些发现对于政策制定者,汽车制造商和参与驾驶员培训的教育机构至关重要。他们强调了制定量身定制的培训计划的必要性,以促进日益复杂的汽车技术的熟练和安全运行。
摘要研究表明,非专家用户倾向于过度信任或不信任人工智能系统。当人工智能应用于医疗保健时,这引起了人们的担忧,患者信任不可靠系统的建议或完全不信任可靠系统的建议可能会导致致命事故或错过医疗保健机会。先前的研究表明,解释可以帮助用户对人工智能系统的信任做出适当的判断,但如何在医疗支持场景中为非专家用户设计人工智能解释界面仍然是一个悬而未决的研究挑战。本文探讨了一个基于阶段的参与式设计过程,以在人工智能医疗支持场景中为非专家开发一个值得信赖的解释界面。值得信赖的解释是一种帮助用户对医疗保健是否信任人工智能系统做出深思熟虑的判断的解释。本文的目的是确定可以有效地为值得信赖的解释界面的设计提供信息的解释组件。为了实现这一目标,我们进行了三次数据收集,研究了专家和非专家对人工智能医疗支持系统解释的看法。然后,我们开发了一个用户心理模型、一个专家心理模型和一个目标心理模型,描述了非专家和专家如何理解解释,他们的理解有何不同,以及如何将它们结合起来。基于目标心理模型,我们提出了一套 14 条解释设计指南,用于可信的人工智能医疗系统解释,这些指南考虑到了非专家用户的需求、医疗专家的实践和人工智能专家的理解。