在固体物理学和凝聚态物理学中,态密度 (DOS) 量化了所考虑材料中易被占据并具有确定能量的电子态的数量。只要知道色散关系,就可以计算出这个量。可以为各种各样的系统计算 DOS。某些量子系统由于其晶体结构而具有对称性,这简化了 DOS 的计算。总 DOS 是一个允许确定材料电子传导特性的参数。对于晶体中的每个原子,我们确定一个半径为的球体,在该球体内部,我们将电子密度投影到球谐函数(类型:s、p、d 或 f)上。部分 DOS 用于识别晶体中化学键的结构。使用 DFT(密度泛函理论)对单斜 ZrO 2 (m-ZrO 2 ) 的电荷密度和 DOS 进行了第一性原理研究,其中 m-GGA (TPSS) 函数用于交换关联势、伪势 (PP) 近似和 STO (斯莱特类型轨道) 作为集成在 ADF-BAND 代码中的基本函数。氧化锆 (ZrO 2 ) 是一种高 k 电介质 (k 25 和 E g 6 eV)。ZrO 2 是一种很有前途的高 k 电介质候选材料,可取代 SiO 2 作为 CMOS 中的栅极氧化物,因为它兼具出色的机械、热、化学和介电性能。
我们开发了一种基于组合拉普拉斯算子的状态密度 (DOS) 估计的量子拓扑数据分析 (QTDA) 协议。计算图和单纯复形的拓扑特征对于分析数据集和构建可解释的人工智能解决方案至关重要。由于组合缩放,对于具有超过 60 个顶点和高阶拓扑特征的单纯复形,这项任务在计算上变得困难。我们建议通过将底层超图嵌入为有效量子汉密尔顿量并从时间演化中评估其状态密度来完成这项任务。具体来说,我们使用有效汉密尔顿量的 Cartan 分解将传播器组合成量子电路,并使用多保真协议对时间演化状态的重叠进行采样。接下来,我们开发各种后处理例程并实现类似傅里叶的变换以恢复汉密尔顿量的秩(和核)。这使我们能够估计贝蒂数,揭示单纯复形的拓扑特征。我们在无噪声和有噪声的量子模拟器上测试了我们的协议,并在 IBM 量子处理器上运行了示例。我们观察到,即使在没有错误缓解的情况下,所提出的 QTDA 方法对真实硬件噪声的弹性也很大,这显示了近期设备实现的前景,并凸显了基于全局 DOS 的估计器的实用性。
机器学习在材料设计、发现和属性预测方面表现出了强大的能力。然而,尽管机器学习在预测离散属性方面取得了成功,但连续属性预测仍然存在挑战。由于晶体对称性的考虑和数据稀缺,晶体固体的挑战更加严峻。这里,仅使用原子种类和位置作为输入来演示声子态密度 (DOS) 的直接预测。应用欧几里得神经网络,其构造等同于 3D 旋转、平移和反转,从而捕捉完整的晶体对称性,并使用约 10 3 个示例的小型训练集(包含超过 64 种原子类型)实现高质量预测。预测模型再现了实验数据的关键特征,甚至可以推广到具有看不见元素的材料,并且自然适合有效预测合金系统而无需额外的计算成本。通过预测大量高声子比热容材料,证明了该网络的潜力。该工作表明了一种探索材料声子结构的有效方法,并可进一步快速筛选高性能储热材料和声子介导的超导体。
最近,人们对从信息几何的角度研究量子力学的兴趣日益浓厚,其中量子态由投影希尔伯特空间 (PHS) 中的点来描述。然而,高维度量的缺失限制了信息几何在多参数系统研究中的应用。在本文中,我们提出了一种使用量子 Fisher 信息 (QFI) 体积元素来度量 PHS 中量子态的本征密度 (IDQS)。从理论上讲,IDQS 是一种定义一类量子态 (过) 完备关系的度量。作为一种应用,IDQS 用于研究量子测量和多参数估计。我们发现,一组有效估计量的可区分状态 (DDS) 密度由经典 Fisher 信息的不变体积元素来衡量,它是 QFI 的经典对应物,并作为统计流形的度量。通过行列式量子 Cramér-Rao 不等式研究了通过量子测量推断 IDQS 的能力。结果,我们发现在测量中 IDQS 和最大 DDS 之间存在差距。该差距与不确定度关系密切相关。以具有两个参数的三级系统为例,我们发现 Berry 曲率表征了 IDQS 和最大可达到 DDS 之间的平方差距。具体到顶点测量,平方差距与 Berry 曲率的平方成正比。
在基于量子阱的异质结构材料中,研究能态密度对量化磁场强度和占据的依赖关系,可以为纳米级半导体结构中电荷载流子的能谱提供有价值的信息。当低维半导体材料暴露于横向量化磁场时,能态密度可以通过动力学、动力学和热力学量的振荡依赖关系来测量——磁阻、磁化率、电子热容量、热电功率、费米能和其他物理参数 [3, 4]。由此可见,在横向和纵向磁场存在下研究矩形量子阱导带能态密度的振荡是现代固体物理学的迫切问题之一。
我们首次报告了 50 MeV Li 3+ 离子辐照对串联电阻和界面态密度的频率依赖性影响的研究,这些影响是由射频溅射制备的 HfO 2 基 MOS 电容器的电容-电压 (C-V) 和电导-电压 (G-V) 特性确定的。样品在室温下用 50 MeV Li 3+ 离子辐照。测得的电容和电导已根据串联电阻进行校正。在辐照之前和之后,在 1 KHz 至 1 MHz 的不同频率下估算了串联电阻。观察到串联电阻在辐照前随频率从 6344.5 降低到 322 欧姆,在辐照后降低到 8954-134 欧姆。界面态密度D it 由辐照前的1.12×10 12 eV 1 cm 2 降至3.67×10 11 eV 1 cm 2
1 密度算子 2 1.1 纯态密度算子....................................................................................................................................................................2 1.2 混合物密度算子....................................................................................................................................................................................3 1.2.1 纯态和混合物密度矩阵示例 .................................................................................................. 4 1.3 密度矩阵的变换 ..................................................................................................................................................................................5 1.4 乘积空间密度矩阵.................................................................................................................................................... . ... 10 1.8 无通信定理 . ...
图 4. (a) 孤立 K 原子的 s 轨道 (b) BPS + K 结构的 Ks 轨道 (c) 孤立 Ca 原子的 s 轨道 (d) BPS + Ca 结构的 Ca-s 轨道的分态密度。费米能级设定为 0 eV。
开发了一种用于低温沉积二氧化硅的新光化学反应。在此过程中,硅烷在真空紫外线照射下与二氧化氮发生反应。报告了在 1006C 下生长的薄膜的电气和机械性能。硅上金属氧化物半导体结构的电容电压测量表明界面态密度 <5 10 11/cm 2。讨论了几种可能的反应机制,并提出了表明表面光化学可能是