摘要简介:在过去的几十年中,微生物多药耐药性(MDR)已成为许多药物方案中的关键疗法之一。由于这种现象,制药行业,畜牧业和农业行业都受到了某种影响。材料和方法:使用Schrodinger Maestro 9.1软件程序进行了具有指定配体的分子对接研究。蛋白质制备向导用于制备选定的受体。结果:对接模拟揭示了蛋白质配体相互作用曲线中许多元素的重要性,例如氢键,亲脂接触,金属相互作用,PI-PI相互作用和PI-cation相互作用。评分函数是在计算化学和分子建模中使用的快速近似数学算法,以预测两个分子对接后两个分子之间非共价接触的强度。结论:这项研究的发现可能有助于理解这些赋形剂可能的P-GP抑制活性的分子机制。目前的发现将通过使用任何P-gp底物药物分子以及体外和体内研究的配方开发来进一步验证,以获得最终确认。
工业化产品的开发产生了在食品中引入添加剂的必要性,而在食品制定中插入新元素时,主要的挑战之一就是保持其自动特征。但是,在使用添加剂时,必须考虑除了感觉方面,营养价值,外观和安全性[1,2]。根据欧洲食品安全局(EFSA),食品添加剂是有意添加到食品配方中以执行一定功能的物质。它们可以被描述为防腐剂,营养添加剂,例如维生素,纤维和氨基酸,调味剂,着色剂和纹理剂等[2]。对有意识的消费,将健康和环境联系起来的日益关注,导致需要用自然添加剂代替合成添加剂[3]。在这种情况下,食品行业探索了使用生物表面活性剂(BS)作为食品添加剂,因为美国环境保护署已批准在食品和其他工业应用中使用某些类型的BS [1]。1。BS,例如脂肽,糖脂和脂蛋白可以从植物中分离或由某些微生物(例如细菌,酵母菌或真菌)产生的植物或产生[4,5]。此外,BS的固有生物降解性和可持续性满足了市场的当前需求[3]。例如,来自链霉菌的糖脂BS。rhamnolipids(rl)来自假单胞菌属。是食品中最受剥削的BS之一。使用BS作为食物添加剂的另一个优势包括它们对温度变化,酸性培养基和高盐度的稳定性,这是食物环境中观察到的典型条件[6]。在较宽的pH范围内(5.0和9.0之间)和NaCl浓度(1.5%w / v)提出了稳定性,从而可以维持分子结构和物理性能,从而影响最终产品的质量[7]。此外,BS结构的多样性允许根据所需的应用确定生物分子的选择[8]。除了其表面活性特性外,BS据报道还可以改善面团的质地和稳定性,以避免将油基产品分离,帮助混合成分,改善粘度并通过更换脂肪来降低能量价值[1,8]。它们已被包括在面粉,披萨和蛋糕,黄油奶油以及新鲜或冷冻产品的基于面粉的面团中。更具体地说,在冰淇淋和面包店中,RL可用于一致性控制,脂肪稳定和减少衰老[1]。文献还报告了将BS用作食品添加剂作为芳香油溶解
使用电信号 1 来操纵基板上的液滴的能力(称为数字微流体)用于光学 2,3 、生物医学 4,5 、热 6 和电子 7 应用,并已导致商业上可用的液体透镜 8 和诊断套件 9,10 。这种电驱动主要通过电润湿实现,液滴在施加电压的作用下被吸引到导电基板上并在导电基板上扩散。为确保强大而实用的驱动,基板上覆盖有介电层和疏水性面漆,用于介电上电润湿 (EWOD) 11-13 ;这会增加驱动电压(至约 100 伏),并可能因介电击穿 14 、带电 15 和生物污垢 16 而损害可靠性。在这里,我们展示了液滴操控,它使用电信号诱导液体脱湿而不是润湿亲水性导电基底,而无需添加层。在这种与电润湿现象相反的电润湿机制中,液体-基底相互作用不是由电场直接控制的,而是由场诱导的离子表面活性剂与基底的附着和分离控制的。我们表明,这种驱动机制可以在空气中使用掺杂硅晶片上的水执行数字微流体的所有基本流体操作,仅需±2.5伏的驱动电压、几微安的电流和离子表面活性剂临界胶束浓度的约0.015倍。该系统还可以处理常见的缓冲液和有机溶剂,有望成为一种简单可靠的微流体平台,适用于广泛的应用。由于疏水表面是液体吸引机制良好运作的必要条件,我们认识到亲水表面对于液体排斥机制来说是首选。由于大多数材料都是亲水性的,如果发现脱湿驱动有效,则可以像 EWOD 一样实现数字微流体,但不需要疏水涂层。虽然大多数电诱导脱湿现象对常见微流体无效,因为它们基于不可逆过程 17,18 或特殊条件 19 ,但涉及表面活性剂的研究表明可逆性是可能的。例如,已经使用氧化还原活性表面活性剂 20 证明了衍生化金电极上水膜的电引发脱湿。此外,有机液滴已在水性电解质 23 中的共轭聚合物电极上移动。最近,通过使用离子表面活性剂,润滑摩擦系数已在固体-液体-固体配置中切换 21 ,沸腾气泡成核已在液体-蒸汽-固体系统中得到调节 22 。然而,这些方法并没有导致微流体平台技术,这需要可逆、可重复、强大且易于应用于液体-流体-固体系统的电驱动 24 。事实上,我们无法在裸露的金属电极 21,22 或介电涂层电极上用含有离子表面活性剂的水滴获得有效驱动。相反,我们发现裸露的硅晶片可以有效地工作,因为它的天然氧化物具有足够的亲水性,可以轻松脱湿,但又足够薄
摘要 纸基传感器上金属阳离子的电化学检测因其易于制造、一次性使用和成本低廉而被认为是当前光谱和色谱检测技术的一种有吸引力的替代方案。本文设计了一种新型炭黑 (CB)、二甲基乙二肟 (DMG) 墨水作为电极改性剂,与 3 电极喷墨打印纸基体结合使用,用于水样中镍阳离子的吸附溶出伏安电分析。在没有常用的有毒金属薄膜的情况下,所开发的方法提供了一种新颖、低成本、快速且便携的吸附溶出检测方法来进行金属分析。该研究展示了一种在纸基传感器上检测镍的新方法,并通过限制使用有毒金属薄膜,在纸基金属分析领域的先前工作的基础上取得了进展。首次通过增加活性表面积、电子转移动力学和与非导电二甲基乙二肟膜相关的催化效应,提高了器件的灵敏度,并通过电分析进行了确认。首次使用 CB-DMG 墨水可以在电极表面选择性预浓缩分析物,而无需使用有毒的汞或铋金属膜。与类似报道的纸基传感器相比,实现了检测限 (48 µg L -1 )、选择性和金属间干扰的改善。该方法用于检测水样中的镍,远低于世界卫生组织 (WHO) 标准。
分子表面活性剂一般为两亲性分子,由亲水基团和疏水基团组成,这些两亲性分子倾向于在水/油界面处进行吸附,亲水基团浸没在水中,疏水基团浸没在油中,可以有效降低界面张力(Ren等,2019;Rosen和Kunjappu,2012)。但分子表面活性剂在界面处的锚定处于吸附-解吸的热平衡状态,因为分子表面活性剂可以在热运动的驱动下从界面处解吸,乳液会缓慢聚结(Borwankar和Wasan,1988)。此外,由于Ostwald熟化,内部压力大的小液滴会变小,而内部压力小的大液滴会变大(Voorhees,1985)。在液滴聚结和Ostwald熟化作用的影响下,乳状液的平均尺寸会随着时间的推移而缓慢增加,从而降低其总界面能,最终导致相分离(Chesters,1991;Evans & Needham,1987),此时体系的总界面面积最小,总界面能最低。另一方面,固体颗粒,也称为胶体表面活性剂,能够长期稳定两个不混溶相的乳状液(Ramsden,1903)。由胶体表面活性剂稳定的稳定乳状液称为Pickering乳状液(Pickering,1907)。与传统分子表面活性剂稳定的乳液相比,胶体表面活性剂稳定的 Pickering 乳液具有许多独特的性质:(i)胶体表面活性剂从水/油界面的解吸能比热能高几个数量级,导致胶体表面活性剂在界面处发生不可逆吸附,从而具有优异的乳液稳定性( Aveyard,Binks,& Clint,2003 ;Binks,2002 ;Pieranski,1 980);(ii)胶体表面活性剂可以由生物相容性材料制成,表现出良好的生物相容性( Yang,Fu,Wei,Liang,& Binks,2015); (三)胶体表面活性剂可以设计用于实现具有多种功能的Pickering乳液,例如pH,温度或光触发响应(Tang,Quinlan和Tam,2015;Wei,Yu,Rui和Wang,2012;Hao等,2018)。Pickering乳液可以为多学科研究提供独特的平台,并将在科学研究和工业应用中发挥越来越重要的作用。这里我们对Pickering乳液系统进行了全面的回顾。主要涵盖三个方面:(i)粒子特性(包括粒子两亲性、浓度、大小和形状)对 Pickering 乳液的影响;(ii)两亲性聚合物的制备
信息仅供参考。此处的信息被认为是可靠的,但对其准确性、特定应用的适用性或使用后获得的结果不作任何形式的陈述、保证或担保。路博润先进材料公司 (Lubrizol Advanced Materials, Inc.)(“路博润”)无法保证与此信息相关的任何产品与其他物质结合或在您作为“用户”的工艺中的表现。通常,这些信息是基于使用小型设备的实验室工作。由于商业上用于处理材料的方法、条件和设备各不相同,这些信息并不一定表明最终产品的性能或配方的可重复性或安全性。因此,对于以下信息或产品是否适用于向路博润披露的任何应用,路博润不作任何保证或担保。全面测试和最终产品性能由用户负责。此外,任何提供的配方都应仅用作建议的起点。对于使用或处理超出路博润直接控制范围的任何材料,路博润不承担任何责任,用户应承担所有风险和义务。卖方不做任何明示或暗示的保证,包括但不限于适销性或特定用途适用性的暗示保证。本文所含内容不得视为未经专利所有者许可而实施任何专利发明的许可、建议或诱因。
信息仅用于信息目的。本文的信息被认为是可靠的,但没有任何形式的陈述,担保或保证,就其准确性,适用于特定申请的适用性或可从使用中获得的结果。Lubrizol Advanced Materials,Inc。(“ Lubrizol”)无法保证与此信息相关的任何产品如何与其他物质相关联或作为“用户”的过程。通常,该信息基于实验室工作,使用小规模设备。由于在处理材料中商业上使用的方法,条件和设备的变化,信息不一定表明公式中的最终产品性能,可重复性或安全性。因此,没有任何保证或担保对在本协议中针对披露给Lubrizol的任何申请的信息或产品的适用性。全尺度测试和最终产品性能是用户的责任。此外,提出的任何配方应仅作为建议的起点。lubrizol不承担任何责任,用户对于除了Lubrizol直接控制以外的任何材料的使用或处理都承担了所有风险和责任。卖方不做明示或暗示的担保,包括但不限于对特定目的的商人或适合性的隐含保证。本文中没有任何内容被视为未经专利所有人许可的任何专利发明的允许,建议或诱因。
摘要 简介:COVID-19 对全球人类的巨大影响引发了对有效治疗方法的非凡探索。其中之一是使用外源性表面活性剂,目前正在临床试验中进行测试。 涵盖领域:外源性表面活性剂是一种挽救患有新生儿呼吸窘迫综合征的早产儿生命的治疗方法。这种治疗方法也用于治疗急性呼吸窘迫综合征 (ARDS),但成功率有限,这可能是由于该综合征的复杂性。表面活性剂疗法 60 年的成功和失败历史使其有别于目前正在测试的许多其他 COVID-19 治疗方法,并为我们提供了讨论可能影响这种疗法成功的因素的机会。 专家意见:临床数据为在 COVID-19 患者中使用外源性表面活性剂提供了强有力的理由。这种疗法的成功可能受到机械通气策略、治疗时机、给药剂量、给药方法和所用制剂的影响。此外,未来开发增强制剂可能会改善这种治疗方法。总体而言,正在进行的试验结果不仅可以提供数据来表明这种疗法是否对 COVID-19 患者有效,而且还能进一步加深科学理解并改进治疗策略。
辐射召回现象(RRP)是一种急性炎症反应,在施用各种药物化合物后,在先前受辐照的组织中表现出来。尽管皮肤表现是最常见的临床特征,但如果有任何特定的器官暴露于先前的辐射门户,患者也可能出现内脏召回事件,包括肺炎,血瘤,肌病和粘膜炎。本文在过去的10年中回顾了已发表的病例报告,病例系列,摘要和海报演示,任何语言是由各种新型细胞毒性药物引起的,包括免疫疗法,分子靶向药物和非常规化学疗法。我们使用关键词“辐射”,“回忆”,“靶向治疗”和“免疫疗法”通过文献搜索Medline和PubMed检索数据,并在检索到的文章中确定的参考文献也用于进一步搜索文献。随着非常规,新型的细胞毒性剂和靶向分子的使用,同时或依次与辐射分子一起使用,我们期望将来会有更多的RRP发生率,而皮肤病学或内脏回忆反应可能会带来更多的RRP。